K. Chand, A. K. Sharma and S. K. Sharma
Table 5. High-resolution mass spectroscopy and melting point of all synthesized 2-pyridone derivatives
Molecular
formula
Mass (m/z)
calcd/found
Melting
point in °C
Molecular
formula
Mass (m/z)
calcd/found
Melting
point in °C
Compd.
Compd.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
16H18N2O3 287.1396 [M + H]+ /287.1398
18H22N2O3 315.1709 [M + H]+ /315.1701
23H32N2O3 385.2491 [M + H]+ /385.2518
21H28N2O3 357.2178 [M + H]+ / 357.2173
146–148
73–75
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
C17H20N2O4 317.1496 [M + H]+ /317.1425
C19H24N2O4 367.1628 [M + Na]+ /367.1772
C24H34N2O4 415.2591 [M + H]+ /415.2588
C22H30N2O4 387.2278 [M + H]+ /387.2231
150–152
83–85
semi solid at rt
semi solid at rt
107–109
40–42
semi solid at rt
141–143
93–94
15H15NO3
16H17NO3
18H21NO3
18H19NO3
280.0944 [M + Na]+ /280.0949
272.1287 [M + H]+ / 272.1298
322.1419 [M + Na]+ /322.1418
298.1443 [M + H]+ / 298.1460
C16H17NO4
C17H19NO4
C19H23NO4
C19H21NO4
288.1236 [M + H]+ /288.1259
302.1387 [M + H]+ /302.1374
330.1700 [M + H]+ /330.1708
328.1543 [M + H]+ /328.1475
73–75
72–74
72–74
100–102
198–200
147–148
43–45
16H18N2O4 303.1367 [M + H]+ / 303.1372
18H22N2O4 353.1472 [M + Na]+ /353.1601
23H32N2O4 401.2435 [M + H]+ /401.2437
21H28N2O4 373.2127 [M + H]+ /373.2147
189–191
C17H20N2O4 317.1496 [M + H]+ /317.1435
C19H24N2O4 345.1809 [M + H]+ /345.1789
C24H34N2O4 437.2411[M + Na]+/437.2571
C22H30N2O4 387.2278 [M + H]+ /387.2278
160–162
184–187
74–76
semi solid at rt
201–203
33–35
15H15NO4
16H17NO4
18H21NO4
18H19NO4
296.0893 [M + Na]+ /296.0861
288.1236 [M + H]+ /288.1193
338.1368 [M + Na]+ /338.1378
336.1212 [M + Na]+ /336.1175
C16H17NO4
C17H19NO4
C19H23NO4
C17H21NO4
288.1230 [M + H]+ /288.1165
324.1206 [M + Na]+/324.1381
330.1705 [M + H]+ /330.1709
328.1543 [M + H]+ /328.1488
70–71
179–181
65–67
166–168
78–80
185–187
105–107
Conclusions
References
[1] M. Ando, T. Wada, N. Sato. Org. Lett. 2006, 8, 3805–3808.
[2] I. W. Cheney, S. Yan, T. Appleby, H. Walker, T. Vo, N. Yao, R. Hamatake,
Z. Hong, J. Z. Wu. Bioorg. Med. Chem. Lett. 2007, 17, 1679–1683.
[3] D. L. Bai, X. C. Tang, X. C. He. Curr. Med. Chem. 2000, 7, 355–374.
[4] J. A. Wendt, P. J. Gauvreau, R. D. Bach. J. Am. Chem. Soc. 1994, 116,
9921–9926.
A series of 32 differently N-substituted benzoylpyridin-2-(1H)-ones
were synthesized in moderate to high yields and were further char-
acterized by 1D and 2D NMR and HRMS techniques that allowed
full spectral assignments. Among the compounds synthesized, 22,
i.e. the compounds 18–20, 22, 25–32, 34–35, 41–43, and 45–48
are novel and reported for the first time. Although the compounds
17, 21, 23–24, 33, 37–40, and 44 were previously reported by our
group, however, for the sake of comparison, the data of known
compounds are also reported. Analysis of the proton NMR data re-
veals that in all the N-substituted benzoylpyridin-2-(1H)-one deriva-
tives, H-6 of 2-pyridone skeleton appears most deshielded, whereas
in the 13C NMR, ketonic carbonyl was most deshielded. The ortho
coupled protons of the pyridone ring can be distinguished from
that of ortho-aromatic protons of benzoyl moiety on the basis of
higher coupling constant for the former. Interestingly, H-3 proton
showed changes in the value of chemical shift with respect to the
addition of functional group or change in the position of functional
group in the benzoyl ring. The acquired data constitute a valuable
database for the unambiguous identification of the 2-pyridones,
and the information may be useful to researchers working in
related area.
[5] M. E. Wall. Med. Res. Rev. 1998, 18, 299–314.
[6] B. B. Snider, Q. Lu. J. Org. Chem. 1994, 59, 8065–8070.
[7] N. A. Klein, S. J. Siskind, W. H. Frishman, E. H. Sonnelblick, T. H. Le Jemtel.
Am. J. Cardiol. 1981, 48, 170–175.
[8] A. A. Attois, J. M. Canter, M. J. Montanero, D. J. Fort, R. A. Hood.
J. Cardiovascular Pharmacology 1983, 303, 535.
[9] M. D. Gottwald, M. J. Aminoff. Drugs Today 2008, 44, 531–545.
[10] M. Niewerth, D. Kunze, M. Seibold, M. Schaller, H. C. Korting, B. Hube.
Antimicrob. Agent and Chemother. 2003, 47, 1805–1817.
[11] A. D. Elbein, R. J. Molyneux, in Alkaloids: Chemical and Biological
Perspectives, vol. 5 (Ed: S. W. Pelletier)Ed:, Wiley, New York, 1981, pp. 1.
[12] D. Z. Mijin, G. S. Uscumlic, N. U. Perisic-Janjic, N. V. Valentic. Chem. Phys.
Lett. 2006, 418, 223–229.
[13] S. Kumar, B. K. Singh, A. K. Pandey, A. Kumar, S. K. Sharma, H. G. Raj,
A. K. Prasad, E. V. Eycken, V. S. Parmar, B. Ghosh. Bioorg. Med. Chem.
2007, 15, 2952–2962.
[14] K. Chand, S. Prasad, R. K. Tiwari, A. N. Shirazi, S. Kumar, K. Parang,
S. K. Sharma. Bioorg. Chem. 2014, 53, 75–82.
[15] H. Yoon, S. Ahn, D. Hwang, G. Jo, D. W. Kim, S. H. Kim, D. Koh, Y. Lim.
Magn. Reson. Chem. 2012, 50, 759–764.
[16] A. Corazza, I. Harvey, P. J. Sadler. Eur. J. Biochem. 1996, 236, 697–705.
Acknowledgements
The author K. C. is thankful to Erasmus NAMASTE consortium grant
(unique number: NAMASTE_20130125) for the award of postdoc-
toral fellowship. A. K. S. thanks the University Grants Commission
for the award of Junior and Senior Research Fellowships. Financial
support from the University of Delhi for the award of DST Purse
Grant 2 is gratefully acknowledged.
Supporting information
Additional supporting information may be found in the online ver-
sion of this article at publisher’s web site.
wileyonlinelibrary.com/journal/mrc
Copyright © 2016 John Wiley & Sons, Ltd.
Magn. Reson. Chem. 2016, 54, 91–102