Communication
ChemComm
technical assistance at the Central Analytical Research Facility
(CARF) operated by the Institute for Future Environments (IFE).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 Z. Li, R. Zhang, K.-S. Moon, Y. Liu, K. Hansen, T. Le and C. P. Wong,
Adv. Funct. Mater., 2013, 23, 1459–1465.
2 M. R. Patel, J. M. Shukla, N. K. Patel and K. H. Patel, Mater. Res.,
2009, 12, 385–393.
3 G. Ciardelli, A. Rechichi, P. Cerrai, M. Tricoli, N. Barbani and
P. Giusti, Macromol. Symp., 2004, 218, 261–272.
4 M. Nouman, E. Jubeli, J. Saunier and N. Yagoubi, J. Biomed. Mater.
Res., Part A, 2016, 104, 2954–2967.
5 B. D. Ratner, K. W. Gladhill and T. A. Horbett, J. Biomed. Mater. Res.,
1988, 22, 509–527.
Fig. 4 A Frequency change of quartz crystal coated with 10 mL of a
7 mg mLꢀ1 polymer solution (PU-20 min) in dioxane (red) and DMSO (blue)
and irradiated with a 365 nm LED from t0. Data obtained using a quartz
crystal microbalance at 25 1C with a constant flow of water. B X-ray
photoelectron spectroscopy of a silica slide coated with 10 mL of a
7 mg mLꢀ1 polymer solution (PU-20 min) in DMSO, irradiated with a
365 nm LED and washed out with water. Wide scans are available in
the ESI,† Fig. S27.
6 L. Zhou, D. Liang, X. He, J. Li, H. Tan, J. Li, Q. Fu and Q. Gu,
Biomaterials, 2012, 33, 2734–2745.
7 L. Zhou, L. Yu, M. Ding, J. Li, H. Tan, Z. Wang and Q. Fu,
Macromolecules, 2011, 44, 857–864.
8 Z. Wang, P. Wan, M. Ding, X. Yi, J. Li, Q. Fu and H. Tan, J. Polym.
Sci., Part A: Polym. Chem., 2011, 49, 2033–2042.
thickness was assessed using ellipsometry and found to be of
B10 nm (for the DMSO). The photolysis of PU in thin films was
assessed by performing in situ Quartz Crystal Microbalance (QCM)
measurements employing a window module and a 365 nm LED
9 O. Bayer, Angew. Chem., 1947, 59, 257–288.
10 S. Awasthi and D. Agarwal, J. Coat. Technol. Res., 2007, 4, 67–73.
(Fig. 4A) with a constant flow of water (100 ml minꢀ1). The 11 D. K. Schneiderman, M. E. Vanderlaan, A. M. Mannion,
T. R. Panthani, D. C. Batiste, J. Z. Wang, F. S. Bates,
resonance frequency of the quartz sensor is influenced by
C. W. Macosko and M. A. Hillmyer, ACS Macro Lett., 2016, 5,
the addition or removal of mass onto the electrode. Indeed, the
515–518.
increase of averaged resonance frequencies upon light irradiation 12 W. Yang, Q. Dong, S. Liu, H. Xie, L. Liu and J. Li, Procedia Environ.
Sci., 2012, 16, 167–175.
13 D. R. Griffin and A. M. Kasko, J. Am. Chem. Soc., 2012, 134,
demonstrate a significant loss of material on the surface of the
crystal. Due to an increased thickness of the dioxane spin-coated
13103–13107.
ˇ
´
sample, a greater overall mass change was detected. In addition, 14 P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina,
V. Popik, A. Kostikov and J. Wirz, Chem. Rev., 2013, 113, 119–191.
X-ray photoelectron spectroscopy (XPS) was chosen to assess the
chemical changes on the thin film before and after UV-irradiation
15 K. J. R. Lewis, M. W. Tibbitt, Y. Zhao, K. Branchfield, X. Sun,
V. Balasubramaniam and K. S. Anseth, Biomater. Sci., 2015, 3,
(365 nm). The high-resolution spectrum of the nitrogen N 1s
binding energies suggests that the urethane linkage remains intact
after photolysis with the presence of N–C bonds (397 eV) before and
after both light irradiation (Fig. 4B). Additionally, the loss of NO2
functions (403 eV) after photolysis suggests that the oNB undergoes
photocleavage.
In summary, we demonstrate the photodegradability of poly-
urethanes in solution as well as in thin films. The formation of
linear polyurethanes bearing oNB moieties was performed via
step-growth polymerization ensuring the presence of a cleaving
point after every second monomer unit, as proven with high
resolution mass spectrometry. The in-depth study of the photo-
degradability of the oNB-comonomer and linear PU in solution
allowed for a better understanding of the expected chemical
functions on the thin film after photolysis. The degradation of
821–832.
16 L. Li, X.-X. Deng, Z.-L. Li, F.-S. Du and Z.-C. Li, Macromolecules, 2014,
47, 4660–4667.
17 A. M. Rosales, S. L. Vega, F. W. DelRio, J. A. Burdick and
K. S. Anseth, Angew. Chem., Int. Ed., 2017, 56, 12132–12136.
18 O. Bertrand, J.-M. Schumers, C. Kuppan, J. Marchand-Brynaert,
C.-A. Fustin and J.-F. Gohy, Soft Matter, 2011, 7, 6891–6896.
19 J.-M. Schumers, O. Bertrand, C.-A. Fustin and J.-F. Gohy, J. Polym.
Sci., Part A: Polym. Chem., 2012, 50, 599–608.
20 B. Yan, J.-C. Boyer, N. R. Branda and Y. Zhao, J. Am. Chem. Soc., 2011,
133, 19714–19717.
21 H. Zhao, W. Gu, E. Sterner, T. P. Russell, E. B. Coughlin and
P. Theato, Macromolecules, 2011, 44, 6433–6440.
22 H. Zhao, E. S. Sterner, E. B. Coughlin and P. Theato, Macromolecules,
2012, 45, 1723–1736.
23 M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett and
T. S. Tkaczyk, Opt. Express, 2011, 19, 7603–7615.
24 P. L. Kolker and W. A. Waters, J. Am. Chem. Soc., 1964, 1136–1141.
25 V. Jagannadham and S. Steenken, J. Am. Chem. Soc., 1984, 106,
6542–6551.
PU was successful both in solution and in thin films as demon- 26 E. T. Strom and J. Weinstein, J. Org. Chem., 1967, 32, 3705–3706.
27 J. E. T. Corrie, B. C. Gilbert, V. R. N. Munasinghe and
strated with thin film analysis using XPS and QCM.
A. C. Whitwood, J. Am. Chem. Soc., 2000, 2483–2491.
C. B.-K., J. B., E. B. and A.-N. U. gratefully acknowledge
28 D. E. Fast, A. Lauer, J. P. Menzel, A.-M. Kelterer, G. Gescheidt and
financial support from the Australian Research Council (ARC)
and the company Ivoclar Vivadent (Liechtenstein) for key
funding in the context of the Linkage Grant LP170100979.
The authors acknowledge the facilities and the scientific and
C. Barner-Kowollik, Macromolecules, 2017, 50, 1815–1823.
29 J. P. Menzel, B. B. Noble, A. Lauer, M. L. Coote, J. P. Blinco and
C. Barner-Kowollik, J. Am. Chem. Soc., 2017, 139, 15812–15820.
30 B. T. Tuten, J. P. Menzel, K. Pahnke, J. P. Blinco and C. Barner-
Kowollik, Chem. Commun., 2017, 53, 4501–4504.
2914 | Chem. Commun., 2021, 57, 2911ꢀ2914
This journal is The Royal Society of Chemistry 2021