Acc. Chem. Res., 2008, 41, 1399–1408; (d) R. P. Cheng, S. H.
Gellman and W. F. DeGrado, Chem. Rev., 2001, 101, 3219–3232;
(e) D. Seebach and J. L. Matthews, Chem. Commun., 1997,
2015–2022; (g) P. G. Vasudev, S. Chatterjee, N. Shamala and
P. Balaram, Chem. Rev., 2011, 111, 657–687; (h) J. L. Price,
W. S. Horne and S. H. Gellman, J. Am. Chem. Soc., 2010, 132,
12378–12387; (i) G. V. M. Sharma, P. Nagendar, P. Jayaprakash,
P. R. Krishna, K. V. S. Ramakrishna and A. C. Kunwar, Angew.
Chem., Int. Ed., 2005, 44, 5878–5882; (j) J. A. Kritzer,
M. E. Hodsdon and A. Schepartz, J. Am. Chem. Soc., 2005, 127,
4118–4119.
2 (a) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173–180;
(b) M. G. Woll, J. R. Lai, I. A. Guzei, S. J. C. Taylor, M. E. B.
Smith and S. H. Gellman, J. Am. Chem. Soc., 2001, 123,
11077–11078; (c) D. Seebach, S. Abele, K. Gademann and
B. Jaun, Angew. Chem., Int. Ed., 1999, 38, 1595–1597;
(d) S. H. Choi, I. A. Guzei, L. C. Spencer and S. H. Gellman,
J. Am. Chem. Soc., 2010, 132, 13879–13885; (e) S. De Pol, C. Zorn,
C. D. Klein, O. Zerbe and O. Reiser, Angew. Chem., Int. Ed., 2004,
Fig. 3 Superposition of the backbone conformation of the a/g4-hybrid
peptide (gray) on the a-helix (cyan). All the backbone atoms of the a/g4
hybrid peptide were used to overlay with the octapeptide of the a-helix,
RMS = 0.81.
43, 511–514; (f) L. Berlicki, L. Pilsl, E. Weber, I. M. Mandity,
´ ´
C. Cabrele, T. A. Martinek, F. Fulop and O. Reiser, Angew.
¨
Chem., Int. Ed., 2012, 51, 2208–2212.
¨
3 (a) M. D. Boersma, H. S. Haase, K. J. Peterson-Kaufman,
E. F. Lee, O. B. Clarke, P. M. Colman, B. J. Smith,
W. S. Horne, W. D. Fairlie and S. H. Gellman, J. Am. Chem.
Soc., 2012, 134, 315–323; (b) J. L. Price, W. S. Horne and
S. H. Gellman, J. Am. Chem. Soc., 2010, 132, 12378–12387;
(c) W. S. Horne, L. M. Johnson, T. J. Ketas, P. J. Klasse,
M. Lu, J. P. Moore and S. H. Gellman, Proc. Natl. Acad. Sci.
U. S. A., 2009, 106, 14751–14756; (d) S. H. Choi, I. A. Guzei,
L. C. Spencer and S. H. Gellman, J. Am. Chem. Soc., 2009, 131,
2917–2924; (e) S. H. Choi, I. A. Guzei and S. H. Gellman, J. Am.
Chem. Soc., 2007, 129, 13780–13781.
4 T. Hintermann, K. Gademann, B. Jaun and D. Seebach, Helv.
Chim. Acta, 1998, 81, 893–1002.
5 S. Hanessian, X. Luo, R. Schaum and S. Michnick, J. Am. Chem.
Soc., 1998, 120, 8569–8570.
6 A. Bandyopadhyay, S. M. Mali, P. Lunawat, K. M. P. Raja and
H. N. Gopi, Org. Lett., 2011, 13, 4482–4485.
7 S. M. Mali, A. Bandyopadhyay, S. V. Jadhav, M. Ganesh Kumar
and H. N. Gopi, Org. Biomol. Chem., 2011, 9, 6566–6574.
8 C. Baldauf, R. Gunther and H.-J. Hofmann, J. Org. Chem., 2006,
71, 1200–1208.
9 (a) P. G. Vasudev, S. Chatterjee, N. Shamala and P. Balaram,
Acc. Chem. Res., 2009, 42, 1628–1639; (b) P. G. Vasudev,
S. Chatterjee, K. Ananda, N. Shamala and P. Balaram, Angew.
Chem., Int. Ed., 2008, 47, 6430–6432; (c) S. Chatterjee,
P. G. Vasudev, S. Raghothama, C. Ramakrishnan, N. Shamala
and P. Balaram, J. Am. Chem. Soc., 2009, 131, 5956–5965;
(d) S. Aravinda, K. Ananda, N. Shamala and P. Balaram,
Chem.–Eur. J., 2003, 9, 4789–4795.
10 L. Guo, Y. Chi, A. M. Almeida, I. A. Guzei, B. K. Parker and
S. H. Gellman, J. Am. Chem. Soc., 2009, 131, 16018–16020.
11 (a) G. V. M. Sharma, V. B. Jadhav, K. V. S. Ramakrishna,
P. Jayaprakash, K. Narsimulu, V. Subash and A. C. Kunwar, J. Am.
Chem. Soc., 2006, 128, 14657–14668; (b) G. V. M. Sharma,
N. Chandramouli, M. Choudhary, P. Nagendar, K. V. S.
Ramakrishna, A. C. Kunwar, P. Schramm and H.-J. Hofmann,
J. Am. Chem. Soc., 2009, 131, 17335–17344.
predominantly existing natural a-helix. The superimposition
of the backbone conformations of P3 with the a-helix of
chicken egg white lysozyme14 (PDB code: 1HEL, sequence:
C-E-L-A-A-A-M-K, 6–13) is shown in Fig. 3. Instructively, the
backbone conformation of hybrid hexapeptide P3 is well
correlated with the eight residue a-helix, except the H-bonding
pattern. However, the internal H-bonding orientation and
the macrodipole of a/g4-hybrid peptides are analogous to the
a-peptide helix. The top view of the superimposed P3 and the
a-helix signifies the projection of the amino acid side-chains
(Fig. 3). The backbone correlation and the side-chain projec-
tions of a/g4-hybrid peptide helices with respect to the a-helix
suggest that these hybrid peptides can be exploited as mimics of
a-peptide helices. Further, with the availability of broad side-
chain diversity in both a-and g4-amino acids, these a/g4-hybrid
peptides stand unique than the other a/g-hybrid peptides.
In conclusion, we presented the facile transformation and
the structural analysis of the a/g4-hybrid peptides containing
backbone homologated g4-amino acids. Though there is a
possibility of conceiving different types of H-bond pseudo-
cycles, the atomic resolution data of a series of a/g4-hybrid
peptides revealed the unprecedented 12-helical conformations.
The solution conformations of these peptides and the analogy
with other helices are under investigation. The conformational
analysis and the unique side-chain projections of a/g4-hybrid
peptide helices presented here may provide fundamental
information for the design of functional foldamers.
This work is supported by Department of Science and
Technology, Govt. of India. A. B and S. V. J are thankful to
CSIR, Govt. of India, for senior research fellowship.
12 S. Chatterjee, P. G. Vasudev, K. Ananda, S. Raghothama,
N. Shamala and P. Balaram, J. Org. Chem., 2008, 73, 6595–6606.
13 (a) J.-S. Park, H.-S. Lee, J. R. Lai, B. M. Kim and S. H. Gellman,
J. Am. Chem. Soc., 2003, 125, 8539; (b) E. A. Porter, X. Wang,
M. A. Schmitt and S. H. Gellman, Org. Lett., 2002, 19, 3317–3319;
(c) M. G. Woll, J. D. Fisk, P. R. LePlae and S. H. Gellman, J. Am.
Chem. Soc., 2002, 124, 12447–12452.
Notes and references
1 (a) D. Seebach, A. K. Beck and D. J. Bierbaum, Chem. Biodiversity,
2004, 1, 1111–1239; (b) D. Seebach and J. Gardiner, Acc. Chem.
Res., 2008, 41, 1366–1375; (c) W. S. Horne and S. H. Gellman,
14 K. P. Wilson, B. A. Malcolm and B. W. Matthews, J. Biol. Chem.,
1992, 267, 10842–10849.
c
7172 Chem. Commun., 2012, 48, 7170–7172
This journal is The Royal Society of Chemistry 2012