Table 2 Mechanical properties of the PFPE elastomer
candidate for microfluidic applications involving organic
solvents and/or harsh conditions. Further studies including
microfluidic device fabrication using the ‘‘click’’ PFPE elastomer
are currently under investigation.
a
a
/
G0 /
G00
Strength at
Strain at
MPa MPa Eb/MPa
breakb/MPa breakb (%) Tg /ꢂC
c
Gel 1.04
0.10
3.5 ꢄ 0.2 2.1 ꢄ 0.3
175 ꢄ 30
ꢀ10
a
b
Measured at 25 ꢂC and 1 Hz. Estimated from 3 stress–strain tensile
Acknowledgements
experiments. c Determined by DMA.
We thank the Phelps Family Foundation for the generous
financial support. Z.G. acknowledges a Humboldt Bessel Award.
We also thank Dirk Williams and Darin Williams for assistance
in making molds to cast PFPE samples.
similar to previously reported tensile moduli of cured PFPE and
PDMS materials (3.9 MPa and 2.4 MPa, respectively).22a
Rheometric measurement confirms the PFPE gel as a robust
elastomer with a storage modulus of ꢃ1 MPa (Fig. S3 in the
ESI†). Finally dynamic mechanical analysis (DMA) reveals that
the PFPE elastomer has a glass transition temperature below
room temperature (ꢀ10 ꢂC), as shown in Fig. S4 in the ESI†. The
mechanical properties of the PFPE elastomer are summarized in
Table 2.
Notes and references
1 G. M. Whitesides, Nature, 2006, 442, 368.
2 A. J. de Mello, Nature, 2006, 442, 394.
3 J. Quellette, Ind. Phys., 2003, 9, 14.
4 S. R. Quake and A. Scherer, Science, 2000, 290, 1536.
5 J. W. Hong, V. Studer, G. Hang, W. F. Anderson and S. R. Quake,
Nat. Biotechnol., 2004, 22, 435.
6 S. H. DeWitt, Curr. Opin. Chem. Biol., 1999, 3, 350.
7 C. J. Cullen, R. C. R. Wootton and A. J. de Mello, Curr. Opin. Drug
Discovery Dev., 2004, 7, 798.
3.6 Interfacial bonding strength
8 P. Watts and S. J. Haswell, Curr. Opin. Chem. Biol., 2003, 7, 380.
9 K. E. Peterson, Proc. IEEE, 1982, 70, 420.
10 P. K. Yuen, L. J. Kricka and P. Wilding, J. Micromech. Microeng.,
2000, 10, 401.
11 N. L. Jeon, D. T. Chiu, C. J. Wargo, H. Wu, I. S. Choi, J. R. Anderson
and G. M. Whitesides, Biomed. Microdevices, 2002, 4, 117.
12 M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake,
Science, 2000, 288, 113.
13 T. Thorsen, S. J. Maerkl and S. R. Quake, Science, 2002, 298, 580.
14 J. C. McDonald and G. M. Whitesides, Acc. Chem. Res., 2002, 35,
491.
Valve actuation in elastomeric microfluidic devices needs
a strong bond between two different layers of the material. One
advantage of our material is that there are still active alkyne and
azide functional groups left un-reacted on the surface. In prin-
ciple, it should be possible for the material to react further at
interfaces between layers with or without the use of fresh mate-
rial as glue. Here, two different bonding methods were employed
for the bonding strength test (see the Experimental part).
Preliminary tests of bonding strength show that the simple
devices made by both methods can hold pressure at the bonding
interface. The second method gave a much stronger layer-to-
layer bonding, capable of withstanding nitrogen pressure up to
about 80 psi [550 kPa]. This is comparable to the best bond
strengths achieved in PDMS devices26 and is significantly greater
than previously reported for PFPE materials.26 The ability to
sustain these pressures at the bonding interface suggests the
possibility to fabricate multi-layer microfluidic devices with
integrated microvalves.
15 A. Groisman, M. Enzelberger and S. R. Quake, Science, 2003, 300,
955.
16 J. Liu, C. Hansen and S. R. Quake, Anal. Chem., 2003, 75, 4718.
17 C.-C. Lee, G. Sui, A. Elizarov, C. J. Shu, Y.-S. Shin, A. N. Doole,
D. Stout, O. N. Witte, H. C. Kolb, N. Satyamurthy, J. R. Heath,
M. E. Phelps, S. R. Quake and H.-R. Tseng, Science, 2005, 310, 1793.
18 J. W. Hong and S. R. Quake, Nat. Biotechnol., 2003, 21, 1179.
19 C. Hansen and S. R. Quake, Curr. Opin. Struct. Biol., 2003, 13, 538.
20 D. Psaltis, S. R. Quake and C. H. Yang, Nature, 2006, 442, 381.
21 J. N. Lee, C. Park and G. M. Whitesides, Anal. Chem., 2003, 75, 6544.
22 (a) J. P. Rolland, R. M. van Dam, D. A. Schorzman, S. R. Quake and
J. M. DeSimone, J. Am. Chem. Soc., 2004, 126, 2322; (b)
J. P. Rolland, R. M. van Dam, D. A. Schorzman, S. R. Quake and
J. M. DeSimone, J. Am. Chem. Soc., 2004, 126, 8349; (c) Y. Huang,
P. Castrataro, C.-C. Lee and S. R. Quake, Lab Chip, 2007, 7, 24.
23 (a) J. Scheirs, Modern Fluoropolymers, John Wiley & Sons, Ltd., New
York, 1997, p. 435; (b) G. Maltezos, E. Garcia, G. Hanrahan,
F. A. Gomez, S. Vyawhare, R. M. van Dam, Y. Chen and
A. Scherer, Lab Chip, 2007, 7, 1209.
4. Conclusions
In summary, we designed and synthesized a new type of robust
elastomer by ‘‘click’’ polymerization of perfluoropolyethers
(PFPEs) with tri-azide terminated organic small molecules. The
alkyne–azide ‘‘click’’ chemistry employed in curing not only
provides high efficiency of synthesis and ease of device fabrica-
tion, but, more importantly, produces 1,2,3-triazole linkages that
are very stable against harsh acidic or basic conditions. These
new design features, in combination with the inherent chemical
stability and solvent resistance for PFPE, render the ‘‘click’’
PFPE material remarkable resistance to a variety of organic
solvents, heat and even harsh acidic and especially basic condi-
tions. In addition, the material also shows strong adhesion to
glass and itself, an important property for device fabrication.
This new material overcomes a number of disadvantages of the
current materials used in microfluidic device fabrication,
including PDMS and the previously reported PFPE gels. We
envision that our ‘‘click’’ PFPE elastomer will be an excellent
24 (a) C. W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596; (c) Y. Liu,
D. D. Diaz, A. A. Accurso, K. B. Sharpless, V. V. Fokin and
M. G. Finn, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 5182.
25 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
€
Ed., 2001, 40, 2004; (b) R. Breinbauer and M. Kohn, ChemBioChem,
2003, 4, 1147; (c) W. R. Dichtel, O. S. Miljanic, J. M. Spruell,
J. R. Heath and J. F. Stoddart, J. Am. Chem. Soc., 2006, 128,
10388; (d) S. Angelos, Y.-W. Yang, K. Patel, J. F. Stoddart and
J. I. Zink, Angew. Chem., Int. Ed., 2008, 47, 2222; (e) P. Wu,
A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit,
ꢁ
J. Pyun, J. M. Frechet, K. B. Sharpless and V. V. Fokin, Angew.
Chem., Int. Ed., 2004, 43, 3928.
26 Maximum operating pressure in DeSimone and Quake’s paper (see
ref. 22) was 25 psi. 40 psi was reported in PFPE DNA synthesizer.
For PDMS, ‘‘high’’ bond strength reported as 600 kPa ¼ 87 psi,
please refer to: M. A. Eddings, M. A. Johnson and B. K. Gale, J.
Micromech. Microeng., 2008, 18, 067001.
1106 | J. Mater. Chem., 2012, 22, 1100–1106
This journal is ª The Royal Society of Chemistry 2012