7500
B.A. Shainyan et al. / Tetrahedron 68 (2012) 7494e7501
column chromatography using eluents with increasing polarity
from hexane to Et2O to give the title compound as a colorless oil
(6.70 g, 59% yield calculated on the initial hydrosilane). dH
(400 MHz; CDCl3; Me4Si): 0.44 (3H, s, MeSi), 0.98 (2H, m, SiCH2C),
1.65 (3H, m, CCH2CþOH), 3.00 (1H, d, 2J¼13.7 Hz, SiCHACl), 3.05
(1H, d, 2J¼13.7 Hz, SiCHBCl), 3.63 (2H, t, 3J¼6.6 Hz, CH2O), 7.41
(3H, m, Hm,p), 7.55 (2H, m, Ho). dC (100 MHz; CDCl3; Me4Si): ꢁ6.35
(SiCH3), 8.29 (SiCH2C), 26.70 (SiCH2Cl), 29.14 (CCH2C), 65.37
(CH2O), 128.04 (Cm), 129.78 (Cp), 133.90 (Co), 134.99 (Ci). dSi
(79 MHz; CDCl3; Me4Si): 2.51. Found: C, 57.44; H, 7.67; Si, 12.36;
Cl, 15.31%. C11H17SiOCl requires C, 57.74; H, 7.49; Si, 12.28; Cl,
15.50.
(79.5 MHz; CDCl3; Me4Si): ꢁ6.75. Found: C 63.12; H 12.44; Si 16.42;
N 7.97%. C9H21SiN requires C 63.08; H 12.36; Si 16.39; N 8.17%.
4.2. Theoretical calculations
The geometry of the conformers was optimized at the MP2 and
DFT (B3LYP) level of theory with the 6-311G(d,p) basis set. No re-
strictions on the variation of geometric parameters were imposed
during the optimization procedure. Vibrational calculations were
performed at the B3LYP/6-311G(d,p) level, unscaled ZPE corrections
were used. All calculations were performed with the Gaussian 09
computational program.62
4.1.5. Dimethyl(chloromethyl)(3-hydroxypropyl)silane
(6b). Dimethyl(chloromethyl)(3-hydroxypropyl)silane (6b) was
prepared similar to 6a in 54% yield. A crude product was chroma-
tographed on silica gel using eluents with increasing polarity from
hexane to Et2O to afford (6b) as a colorless oil (2.00 g, 54%) dH
(400 MHz; CDCl3; Me4Si): 0.14 (6H, s, Me2Si), 0.67 (2H, m, SiCH2C),
1.61 (2H, m, CCH2C), 1.78 (1H, br s, OH), 2.80 (2H, s, SiCH2Cl), 3.62
(2H, t, 3J¼6.7 Hz, CH2O). dC (100 MHz; CDCl3; Me4Si): ꢁ4.72 (SiCH3),
9.36 (SiCH2C), 26.66 (SiCH2Cl), 30.12 (CCH2C), 65.36 (CH2O). dSi
(79 MHz; CDCl3; Me4Si): 4.23. 1H NMR data are consistent with
reported those reported earlier.59
Acknowledgements
The financial support of this work by the Russian Foundation for
Basic Research and Deutsche Forschungsgemeinschaft (Grant
RFBR-DFG No. 11-03-91334) is greatly acknowledged. We thank Dr.
Alexander Albanov (Irkutsk), Dipl.-Ing (FA) Angela Krtitschka and
Dr. Matthias Heydenreich (University of Potsdam) for recording and
analysis of the NMR spectra.
Supplementary data
Supplementary data containing additional NMR spectra of
compound 1 and 2, and the results of calculation of various con-
formers of 1 and 2 may be found in the online version of this article.
Supplementary data related to this article can be found online at
4.1.6. Methylphenyl(chloromethyl)(3-chloropropyl)silane
(7a). Methylphenyl(chloromethyl)(3-chloropropyl)silane (7a) was
prepared by chlorination of the above product 6a using the de-
scribed procedure.60,61 A mixture of 6a (2.4 g, 10.5 mmol), triphe-
nylphosphine (2.59 g, 11.6 mmol) and CCl4 (15 mL) was refluxed for
8 h, then cooled to room temperature and n-pentane (30 mL) was
added. The precipitate formed was filtered off, the filterate con-
centrated in vacuo, the residue purified by column chromatography
on silica gel (63e230 mesh, Gerudan) with n-hexane as an eluent.
The relevant fractions were combined and the solvent removed
under reduced pressure to give the product (1.221 g, 47%) as a col-
orless oil. 1H and 13C NMR spectra coincide with those reported by
us earlier.15
References and notes
1. Buffat, M. G. P. Tetrahedron 2004, 60, 1701e1729.
2. Casy, A. F.; Iorio, M. A.; Madani, A. E. Org. Magn. Reson. 1987, 25, 524e530.
3. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529e2591.
4. Gerlach, M.; Jutzi, P.; Stasch, J.-P.; Przuntek, H. Z. Z. Naturforsch. 1982, B37,
657e662.
5. Stasch, J.-P.; Ruß, H.; Schacht, U.; Witteler, M.; Neuser, D.; Gerlach, M.; Leven, M.;
Kuhn, W.; Jutzi, P.; Przuntek, H. Arzneim. Forsch./Drug Res. 1988, 38, 1075e1078.
6. Tacke, R.; Heinrich, T.; Bertermann, R.; Burschka, C.; Hamacher, A.; Kassack, M.
U. Organometallics 2004, 23, 4468e4477.
4.1.7. Dimethylphenyl(chloromethyl)(3-chloropropyl)silane
(7b). Dimethylphenyl(chloromethyl)(3-chloropropyl)silane (7b)
was obtained by the above procedure in 32% yield. 1H and 13C NMR
spectra coincide with those reported by us earlier.14
7. Heinrich, T.; Burschka, C.; Penka, M.; Wagner, B.; Tacke, R. J. Organomet. Chem.
2005, 690, 33e47.
€
8. Ilg, R.; Burschka, C.; Schepmann, D.; Wunsch, B.; Tacke, R. Organometallics 2006,
25, 5396e5408.
9. Tacke, R.; Nguyen, B.; Burschka, C.; Lippert, W. P.; Hamacher, A.; Urban, C.;
Kassack, M. U. Organometallics 2010, 29, 1652e1660.
10. Rousseau, G.; Blanco, L. Tetrahedron 2006, 62, 7951e7993.
11. Sieburth, S. McN.; Chen, C. A. Eur. J. Org. Chem. 2006, 311e322.
4.1.8. 1-I-Propyl-3-methyl-3-phenyl-1,3-azasilinane (1). A mixture
of 7a (1.2 g, 4.9 mmol), i-propylamine (1.437 g, 24.3 mmol) and
benzene (10 mL) was heated in a sealed tube at 100 ꢀC for 13 h, then
the tube was cooled, opened, the precipitate removed by filtration
and washed with n-pentane. The volatile components of the
combined organic phase were removed under reduced pressure.
Judged from the 1H NMR spectrum, the residue (1.166 g) was
a w1:1 mixture of the nonreacted starting silane and the target
product 1. The latter was isolated by column chromatography on
silica gel using CH2Cl2/MeOH (4:1, v/v) as the eluent. The solvent
was removed from combined relevant fractions under reduced
pressure to give 1 (0.424 g, 37%) as a colorless oil. 1H and 13C NMR
data for 1 are given in Table 1. dSi (79 MHz; CDCl3; Me4Si): ꢁ11.30.
Found: C, 72.44; H, 10.03; N, 5.57; Si, 11.94%. C14H23NSi requires C,
72.04; H, 9.93; N, 6.00; Si, 12.03.
ꢁ
ꢁ
ꢁ
12. Hernandez, D.; Nielsen, L.; Lindsay, K. B.; Lopez-García, M. A.; Bjerglund, K.;
Skrydstrup, T. Org. Lett. 2010, 12, 3528e3531.
ꢁ
13. Hernandez, D.; Lindsay, K. B.; Nielsen, L.; Mittag, T.; Bjerglund, K.; Friis, S.;
Mose, R.; Skrydstrup, T. J. Org. Chem. 2010, 75, 3238e3293.
14. Shainyan, B. A.; Kirpichenko, S. V.; Shlykov, S. A.; Kleinpeter, E. J. Phys. Chem. A
2012, 116, 784e789.
15. Shainyan, B. A.; Kirpichenko, S. V.; Kleinpeter, E. Arkivoc 2012, v, 175e185.
16. Delpuech, J.-J. Six-membered Rings. In Cyclic Organonitrogen Stereodynamics;
Lambert, J. B., Takeuchi, Y., Eds.; VCH: New York, NY, 1992; Chapter 7,
pp 169e191.
ꢁ
ꢁ~
17. Hurtado, M.; Contreras, J. G.; Matamala, A.; Mo, O.; Yanez, M. New J. Chem. 2008,
32, 2209e2217 and references cited therein.
18. Shainyan, B. A.; Kleinpeter, E. Tetrahedron 2012, 68, 114e125.
19. Eliel, E. L.; Manoharan, M. J. Org. Chem. 1981, 46, 1959e1962.
20. Wiberg, K. B.; Castejon, H.; Bailey, W. F.; Ochterski, J. J. Org. Chem. 2000, 65,
1181e1187.
21. Lazareva, N. F.; Shainyan, B. A.; Kleinpeter, E. J. Phys. Org. Chem. 2010, 23, 84e89.
22. Lazareva, N. F.; Albanov, A. I.; Shainyan, B. A.; Kleinpeter, E. Tetrahedron 2012,
68, 1097e1104.
23. Bushweller, C. H. Conformational Behavior of Six-Membered Rings. In Analysis,
Dynamics, and Stereoelectronic Effects; Juaristi, E., Ed.; Wiley-VCH: New York,
NY, 1995; pp 25e58.
24. Sakurai, H.; Murakami, M. J. Am. Chem. Soc. 1972, 94, 5080e5082.
25. Arnason, I.; Kvaran, A.; Jonsdottir, S.; Gudnason, P. I.; Oberhammer, H. J. Org.
Chem. 2002, 67, 3827e3831.
4.1.9. 1-I-Propyl-3,3-dimethyl-1,3-azasilinane (2). 1-I-propyl-3,3-
dimethyl-1,3-azasilinane (2) was prepared in a similar manner.
The filtrate and wash solutions were combined, the solvents were
removed under usual pressure, and the residue was purified by
distillation to give 2 in 84% yield as a colorless liquid (2.22 g), bp
105 ꢀC/24 mmHg. 1H and 13C NMR data for 2 are given in Table 1. dSi
26. Squillacote, M. E.; Neth, J. M. J. Am. Chem. Soc. 1987, 109, 198e202.