with green-fluorescent BODIPY FL C5-HPC control probes for
Ld domains (λex 488 nm) corroborated the validity of this
interpretation (Fig. S8‡). Uniform partitioning of dynamic NDI
amphiphiles into Ld phases in GUVs was consistent with the
partition coefficients determined in LUVs (Table 1).
Acknowledgements
We thank D. Jeannerat, A. Pinto and S. Grass for NMR measure-
ments, the Sciences Mass Spectrometry (SMS) platform for
mass spectrometry services, and the University of Geneva, the
European Research Council (ERC Advanced Investigator), the
National Centre of Competence in Research (NCCR) Chemical
Biology and the Swiss NSF for financial support.
Quantitative determination of differences in partitioning by
fluorescence imaging in GUVs is not as straightforward as by
fluorescence spectroscopy in LUVs. However, separate single
plane images of the equator region indicated that NDIs 4 and 5
with more pronounced preferences for Ld phases left not a shade
of red emission in the area occupied by the blue fluorescent Lo
phase (Fig. 9c). The increasing acceptance of mixed NDI amphi-
philes 6 in Lo phases could be guessed from the appearance of
red fluorescence within blue domains (Table 1, entry 2;
Fig. 9d, e). However, these qualitative differences between the
NDI probes in GUVs are relatively minor and much less evident
than in quantitative measurements in LUVs. Controls confirmed
that dynamic triple-tail amphiphile 22 suffers increasingly from
intramolecular fluorescence quenching but still partitions into the
Ld phase (Fig. S8‡). The partitioning of dynamic PDI amphi-
philes was too poor for meaningful fluorescence imaging in
GUVs.
References
1 T. Takeuchi, J. Montenegro, A. Hennig and S. Matile, Chem. Sci., 2011,
2, 303–307.
2 S. M. Butterfield, T. Miyatake and S. Matile, Angew. Chem., Int. Ed.,
2009, 48, 325–328.
3 (a) J. Montenegro, P. Bonvin, T. Takeuchi and S. Matile, Chem.–Eur. J.,
2010, 16, 14159–14166; (b) J. Montenegro and S. Matile, Chem.–Asian
J., 2011, 6, 681–689; (c) J. Montenegro, A. Fin and S. Matile, Org.
Biomol. Chem., 2011, 9, 2641–2647.
4 (a) C. Gehin, J. Montenegro, E.-K. Bang, A. Fin, S. Matile and
H. Riezman, in preparation; (b) E.-K. Bang and S. Matile, in preparation.
5 (a) S. C. Semple, A. Akinc, J. Chen, A. P. Sandhu, B. L. Mui, C. K. Cho,
D. W. Y. Sah, D. Stebbing, E. J. Crosley, E. Yaworski, I. M. Hafez,
J. R. Dorkin, J. Qin, K. Lam, K. G. Rajeev, K. F. Wong, L. B. Jeffs,
L. Nechev, M. L. Eisenhardt, M. Jayaraman, M. Kazem, M. A. Maier,
M. Srinivasulu, M. J. Weinstein, Q. Chen, R. Alvarez, S. A. Barros,
S. De, S. K. Klimuk, T. Borland, V. Kosovrasti, W. L. Cantley, Y. K. Tam,
M. Manoharan, M. A. Ciufolini, M. A. Tracy, A. de Fougerolles,
I. MacLachlan, P. R. Cullis, T. D. Madden and M. J. Hope, Nat. Biotech-
nol., 2010, 28, 172–176; (b) M. Mével, N. Kamaly, S. Carmona,
M. H. Oliver, M. R. Jorgensen, C. Crowther, F. H. Salazar, P. L. Marion,
M. Fujino, Y. Natori, M. Thanou, P. Arbuthnot, J.-J. Yaouanc,
P. A. Jaffrès and A. D. Miller, J. Controlled Release, 2010, 143, 222–
232; (c) M. E. Davis, J. E. Zuckerman, C. H. J. Choi, D. Seligson,
A. Tolcher, C. A. Alabi, Y. Yen, J. D. Heidel and A. Ribas, Nature, 2010,
464, 1067–1070; (d) V. Janout and S. L. Regen, Bioconjugate Chem.,
2009, 20, 183–192; (e) J. A. Boomer, M. M. Qualls, H. D. Inerowicz,
R. H. Haynes, V. S. Patri, J. M. Kim and D. H. Thompson, Bioconjugate
Chem., 2009, 20, 47–59; (f) S. Bhattacharya and A. Bajaj, Chem.
Commun., 2009, 4632–4656.
6 (a) K. Inomata, A. Ohno, H. Tochio, S. Isogai, T. Tenno, I. Nakase,
T. Takeuchi, S. Futaki, Y. Ito, H. Hiroaki and M. Shirakawa, Nature,
2009, 458, 106–109; (b) P. A. Wender, W. C. Galliher, E. A. Goun,
L. R. Jones and T. H. Pillow, Adv. Drug Delivery Rev., 2008, 60, 452–
472; (c) A. A. Kale and V. P. Torchilin, Bioconjugate Chem., 2007, 18,
363–370; (d) E. K. Esbjorner, P. Lincoln and B. Norden, Biochim.
Biophys. Acta, Biomembr., 2007, 1768, 1550–1558; (e) T. Shimanouchi,
P. Walde, J. Gardiner, Y. R. Mahajan, D. Seebach, A. Thomae,
S. D. Kraemer, M. Voser and R. Kuboi, Biochim. Biophys. Acta, Bio-
membr., 2007, 1768, 2726–2736; (f) M. Martinell, X. Salvatella,
J. Fernández-Carneado, S. Gordo, M. Feliz, M. Menéndez and E. Giralt,
ChemBioChem, 2006, 7, 1105–1113; (g) T. Takeuchi, M. Kosuge,
A. Tadokoro, Y. Sugiura, M. Nishi, M. Kawata, N. Sakai, S. Matile and
S. Futaki, ACS Chem. Biol., 2006, 1, 299–303; (h) T. Jiang, E. S. Olson,
Q. T. Nguyen, M. Roy, P. A. Jennings and R. Y. Tsien, Proc. Natl. Acad.
Sci. U. S. A., 2004, 101, 17867–17872.
Conclusions
This is the first report on dynamic amphiphiles with fluorescent
tails. NDIs and PDIs were selected as representative fluoro-
phores, mainly for convenience but also because of their poten-
tial as photostable FRET systems in Lo phases. The synthesis of
NDIs and PDIs with one aldehyde was as straightforward as
expected, solubilizing groups had to be added and refined. With
fluorescent tails, covalent capture by hydrazide head groups
could be easily followed by RP-HPLC. Dynamic NDI amphi-
philes could be purified, isolated and characterized without
excessive decomposition. Dynamic NDI amphiphiles activated
DNA as transporters in lipid bilayers, and activity could be
modulated by the composition of the of mixed systems.
Dynamic PDI amphiphiles were nearly inactive due to poor par-
titioning. This finding confirmed that dynamic NDI (but not
PDI) amphiphiles could be used to visualize cellular uptake path-
ways and label intracellular membranes. For example, one can
imagine active complexes with DNA being taken up by endocy-
tosis, amphiphilic NDI hydrazones being hydrolyzed in the more
acidic endosomes and hydrophobic NDI probes being released
to report on the nature of endosomal membranes.
Qualitative imaging in mixed GUVs revealed that dynamic
NDI amphiphiles partition into the Ld phase, independent of
their structure. However, quantitative partitioning studies in
LUVs revealed that partitioning in mixed membranes can be
modulated by the composition of mixed amphiphiles. Taken
together, these results fully confirm the potential of dynamic flu-
orescent amphiphiles to selectively label extra- and intracellular
membrane domains, and that the selectivity can be modulated
with the structure of mixed amphiphiles. With cNDIs and par-
ticularly cPDIs not fully convincing, we currently focus on
dynamic fluorescent amphiphiles that operate with environ-
mental-sensitive, conceptually innovative fluorophores rather
than by partitioning.
7 (a) T. Baumgart, G. Hunt, E. R. Farkas, W. W. Webb and
G. W. Feigenson, Biochim. Biophys. Acta, Biomembr., 2007, 1768, 2182–
2194; (b) T. Baumgart, S. T. Hess and W. W. Webb, Nature, 2003, 425,
821–824; (c) T. Hamada, R. Sugimoto, T. Nagasaki and M. Takagi, Soft
Matter, 2011, 7, 220–224; (d) H. M. Kim and B. R. Cho, Acc. Chem.
Res., 2009, 42, 863–872; (e) L. A. Bagatolli, Biochim. Biophys. Acta,
Biomembr., 2006, 1758, 1541–1556; (f) O. A. Kucherak, S. Oncul,
Z. Darwich, D. A. Yushchenko, Y. Arntz, P. Didier, Y. Mely and
A. S. Klymchenko, J. Am. Chem. Soc., 2010, 132, 4907–4916;
(g) J. Sutharsan, D. Lichlyter, N. E. Wright, M. Dakanali,
M. A. Haidekker and E. A. Theodorakis, Tetrahedron, 2010, 66, 2582–
2588; (h) P. Yan, A. Xie, M. Wei and L. M. Loew, J. Org. Chem., 2008,
73, 6587–6594; (i) N. F. Morales-Penningston, J. Wu, E. R. Farkas,
S. L. Goh, T. M. Konyakhina, J. Y. Zheng, W. W. Webb and
G. W. Feigenson, Biochim. Biophys. Acta, Biomembr., 2010, 1798, 1324–
1332.
6092 | Org. Biomol. Chem., 2012, 10, 6087–6093
This journal is © The Royal Society of Chemistry 2012