Job/Unit: O20260
/KAP1
Date: 25-04-12 15:15:36
Pages: 5
T. Ogawa, T. Nakamura, T. Araki, K. Yamamoto, S. Shuto, M. Arisawa
SHORT COMMUNICATION
126.45, 121.11, 120.48, 119.51, 116.91, 112.02, 63.19, 51.39, 46.19,
43.90, 43.06, 34.40, 29.06, 28.89 ppm. LRMS (EI): m/z = 312
[M]+. HRMS (EI): calcd. for C19H25N2O2 [M + H]+ 313.1911;
found 313.1913.
Conclusions
The chemistry described in this communication shows
the first example of the Ru-catalyzed cycloisomerization re-
action between a 1,3-diene and an alkene leading to a syn-
thetically useful 3-exomethylene-2-vinylindole derivative
and its application to the synthesis of racemic cinchon-
aminone [(Ϯ)-1]. Synthesis of cinchonaminone analogues
by this method and their effects on human MAOs are under
investigation to study the structure–activity relationship.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and full characterization of com-
pounds 2–4, 6–12, 14–16, and (Ϯ)-1.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research
on Innovative Areas “Molecular Activation Directed toward
Straightforward Synthesis” from the Ministry of Education, Cul-
ture, Sports, Science and Technology.
Experimental Section
Preparation of N-Methoxycarbonyl-3-methylene-2-(1-propenyl)-
indoline (3): Under an Ar atmosphere, to a solution of 2 (591 mg,
2.58 mmol) in benzene (210 mL) was added Grubbs 2nd generation
catalyst (109 mg, 0.13 mmol, 5 mol-%) and vinyloxytrimethylsilane
(385 μL, 2.58 mmol), and the mixture was heated at reflux for 1 h.
Solvents were partially removed under reduced pressure, and the
obtained residue was subjected to column chromatography (SiO2,
hexane/AcOEt = 20:1) to give 3 (510 mg, 2.23 mmol, 87%, E/Z =
[1] For recent reviews, see: a) J. Barluenga, F. Rodríguez, F. J.
Faáanás, Chem. Asian J. 2009, 4, 1036–1048; b) O. Miyata, N.
Takeda, T. Naito, Heterocycles 2009, 78, 843–871; c) K. Krüger
(née Alex), A. Tillack, M. Beller, Adv. Synth. Catal. 2008, 350,
2153–2167; d) G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006,
106, 2875–2911; e) S. Cacchi, G. Fabrizi, Chem. Rev. 2005, 105,
2873–2920.
[2] a) M. Arisawa, Y. Terada, M. Nakagawa, A. Nishida, Angew.
Chem. 2002, 114, 4926; Angew. Chem. Int. Ed. 2002, 41, 4732–
4734; b) Y. Terada, M. Arisawa, A. Nishida, Angew. Chem.
2004, 116, 4155; Angew. Chem. Int. Ed. 2004, 43, 4063–4067;
c) M. Arisawa, Y. Terada, K. Takahashi, A. Nishida, J. Org.
Chem. 2006, 71, 4255–4261.
1
7:3) as a colorless oil. H NMR (400 MHz, CDCl3, 50 °C, E iso-
mer): δ = 7.81 (br., 1 H), 7.41 (d, J = 7.7 Hz, 1 H), 7.25 (dd, J =
7.7, 7.7 Hz, 1 H), 6.99 (dd, J = 7.7, 7.7 Hz, 1 H), 5.74 (dd, J = 6.8,
15.0 Hz, 1 H), 5.51 (d, J = 2.7 Hz, 1 H), 5.45 (ddq, J = 1.8, 7.7,
14.9 Hz, 1 H), 5.18 (d, J = 7.2 Hz, 1 H), 4.97 (d, J = 2.3 Hz, 1 H),
3.82 (s, 3 H), 1.71 (dd, J = 1.8, 6.8 Hz, 3 H) ppm. 1H NMR
(400 MHz, CDCl3, 50 °C, Z isomer): δ = 7.81 (br., 1 H), 7.41 (d, J
= 7.7 Hz, 1 H), 7.25 (dd, J = 7.7, 7.7 Hz, 1 H), 6.99 (dd, J = 7.7,
7.7 Hz, 1 H), 5.70–5.61 (m, 2 H), 5.47 (d, J = 2.7 Hz, 1 H), 5.34
(ddq, J = 1.8, 9.5, 10.9 Hz, 1 H), 4.93 (d, J = 2.3 Hz, 1 H), 3.81 (s,
3 H), 1.71 (dd, J = 1.8, 6.8 Hz, 3 H) ppm. 13C NMR (125 MHz,
CDCl3, E isomer): δ = 153.13, 144.71, 143.70, 129.93, 129.51,
128.10, 127.55, 122.80, 120.57, 115.66, 103.31, 66.03, 52.45,
17.60 ppm. LRMS (EI): m/z = 229 [M]+. HRMS (EI): calcd. for
C14H15NO2 [M]+ 229.1103; found 229.1098. C14H15NO2·0.25H2O
(233.8): calcd. C 71.93, H 6.68, N 5.99; found C 71.99, H 6.48, N
5.90.
[3] For a review on metal-catalyzed isomerizations, see: S. Krom-
piec, M. Krompiec, R. Penczek, H. Ignasiak, Coord. Chem.
Rev. 2008, 252, 1819–1841.
[4] For reviews on non-metathesis reactions, see: a) B. Alcaide, P.
Almendros, Chem. Eur. J. 2003, 9, 1258–1262; b) B. Schmidt,
Eur. J. Org. Chem. 2004, 9, 1865–1880; c) M. Arisawa, Y. Ter-
ada, K. Takahashi, M. Nakagawa, A. Nishida, Chem. Rec.
2007, 7, 238–253; d) B. Alcaide, P. Almendros, A. Luna, Chem.
Rev. 2009, 109, 3817–3858.
[5] Y. Terada, M. Arisawa, A. Nishida, J. Org. Chem. 2006, 61,
1269–1272.
[6] a) J. M. Takacs, L. G. Anderson, J. Am. Chem. Soc. 1987, 109,
2200–2202; b) Y. Sato, Y. Oonishi, M. Mori, Organometallics
2003, 22, 30–32; see also Pd-catalyzed cyclization of polyenes:
c) J. M. Takacs, J. Zhu, Tetrahedron Lett. 1990, 31, 117–1120;
d) J. M. Takacs, J. Zhu, S. Chandramouli, J. Am. Chem. Soc.
1992, 114, 773–774; e) J. M. Takacs, F. Clement, J. Zhu, S. V.
Chandramouli, X. Gong, J. Am. Chem. Soc. 1997, 119, 5804–
5817.
[7] Although it is known that Ru-catalyzed diene cycloisomeriza-
tion usually leads to five-membered rings, in this case a six-
membered ring cyclization is probably the result of 1,3-diene
conjugation.
Preparation of (؎)-3-(2-Hydroxyethyl)-2-[2-(3-vinylpiperidin-4-yl)-
acetyl]indole (1): A solution of 16 (35 mg, 63 μmol) in 3 m HCl in
MeOH (2 mL) was stirred at 40 °C overnight. The solvent was re-
moved under reduced pressured, and the obtained residue was sub-
jected to column chromatography (SiO2, CHCl3/MeOH = 100:0–
97:3) to give (Ϯ)-1 (15 mg, 48 μmol, 76%) as a white amorphous
1
solid. H NMR (500 MHz, CDCl3): δ = 9.11 (s, 1 H), 7.70 (d, J =
8.0 Hz, 1 H), 7.37 (d, J = 8.0 Hz, 1 H), 7.35 (dd, J = 8.6, 8.6 Hz,
1 H), 7.15 (dd, J = 8.0, 8.0 Hz, 1 H), 6.14 (dt, J = 9.7, 17.2 Hz, 1
H), 5.13 (dd, J = 2.3, 10.3 Hz, 1 H), 5.03 (dd, J = 1.7, 17.2 Hz, 1
H), 3.94 (t, J = 6.3 Hz, 2 H), 3.37 (t, J = 6.3 Hz, 2 H), 3.04 (dt, J
= 4.0, 12.6 Hz, 1 H), 2.97–2.91 (m, 3 H), 2.80–2.69 (m, 2 H), 2.45
(m, 1 H), 2.38 (m, 1 H), 1.55–1.44 (m, 2 H) ppm. 13C NMR
(125 MHz, CDCl3): δ = 192.83, 137.62, 136.01, 132.88, 128.40,
[8] N. Mitsui, T. Noro, M. Kuroyanagi, T. Miyase, K. Umehara,
A. Ueno, Chem. Pharm. Bull. 1989, 37, 363–366.
[9] R. L. Funk, M. M. Abelman, J. D. Munger Jr., Tetrahedron
1986, 42, 2831–2846.
Received: March 3, 2012
Published Online:
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0