Journal of Medicinal Chemistry
Article
state-dependent inhibitor of NaV1.7 with oral efficacy in the formalin
model of persistent pain. J. Med. Chem. 2011, 54, 4427−4445.
(13) Chowdhury, S.; Chafeev, M.; Liu, S.; Sun, J.; Raina, V.; Chui, R.;
Young, W.; Kwan, R.; Fu, J.; Cadieux, J. A. Discovery of XEN907, a
spirooxindole blocker of NaV1.7 for the treatment of pain. Bioorg. Med.
Chem. Lett. 2011, 21, 3676−3681.
(14) Macsari, I.; Sandberg, L.; Besidski, Y.; Gravenfors, Y.; Ginman, T.;
Bylund, J.; Bueters, T.; Eriksson, A. B.; Lund, P.-E.; Venyike, E.;
Arvidsson, P. I. Phenyl isoxazole voltage-gated sodium channel blockers:
structure and activity relationship. Bioorg. Med. Chem. Lett. 2011, 21,
3871−3876.
(15) Nguyen, H. N.; Bregman, H.; Buchanan, J. L.; Du, B.; Feric, E.;
Huang, L.; Li, X.; Ligutti, J.; Liu, D.; Malmberg, A. B.; Matson, D. J.;
McDermott, J. S.; Patel, V. F.; Wilenkin, B.; Zou, A.; McDonough, S. I.
Discovery and optimization of aminopyrimidinones as potent and state-
dependent NaV1.7 antagonists. Bioorg. Med. Chem. Lett. 2012, 22, 1055−
1060.
(16) Bregman, H.; Nguyen, H. N.; Feric, E.; Ligutti, J.; Liu, D.;
McDermott, J. S.; Wilenkin, B.; Zou, A.; Huang, L.; Li, X.; McDonough,
S. I.; DiMauro, E. F. The discovery of aminopyrazines as novel, potent
NaV1.7 antagonists: hit-to-lead identification and SAR. Bioorg. Med.
Chem. Lett. 2012, 22, 2033−2042.
(17) Chakka, N.; Bregman, H.; Du, B.; Nguyen, H. N.; Buchanan, J. L.;
Feric, E.; Ligutti, J.; Liu, D.; McDermott, J. S.; Zou, A.; McDonough, S.
I.; DiMauro, E. F. Discovery and hit-to-lead optimization of
pyrrolopyrimidines as potent, state-dependent NaV1.7 antagonists.
Bioorg. Med. Chem. Lett. 2012, 22, 2052−2062.
(18) Gonzalez, J. E.; Termin, A. P.; Wilson, D. M. Small Molecule
Blockers of Voltage-Gated Sodium Channels. Methods and Principles in
Medicinal Chemistry. In Voltage-Gated Ion Channels as Drug Targets;
Triggle, D. J., Gopalakrishnan, M., Rampe, D., Zheng, W., Mannhold, R.,
Kubinyi, H., Folkers, G., Eds.; Wiley-VCH: Weinheim, Germany, 2006;
Vol. 29, pp 168−192.
(19) Priest, B. T. Future potential and status of selective sodium
channel blockers for the treatment of pain. Curr. Opin. Drug Discovery
Dev. 2009, 12, 682−692.
(20) Arvidsson, P. I.; Besidski, Y.; Csjernyik, G; Lange, T.; Macsari, I.;
Nilsson, L. I. Isoindoline derivatives comprising an additional
heterocyclic group and their use in the treatment of pain disorders.
WO2009145718, 2009.
(21) Åhlin, K.; Arvidsson, P. I.; Besidski, Y.; Nilsson, L. I. Isoindoline
derivatives comprising a cyano group and their use in the treatment of
pain disorders. WO2009145719, 2009.
(22) Arvidsson, P. I.; Besidski, Y.; Csjernyik, G.; Sandberg, L.
Isoindoline derivatives comprising additional heterocyclic groups and
their use in the treatment of pain disorders. WO2009145720, 2009.
(23) Besidski, Y.; Claesson, A.; Csjernyik, G.; Macsari, I.; Nilsson, L. I.
Isoindoline derivatives comprising phenyl groups and their use in the
treatment of pain disorders. WO2009145721, 2009.
(24) Kato, S.; Nonoyama, N.; Tomimoto, K.; Mase, T. Noncryogenic
metalation of aryl bromides bearing proton donating groups: formation
of a stable magnesio-intermediate. Tetrahedron Lett. 2002, 43, 7315−
7317.
area under curve; Vss, volume of distribution; t1/2, terminal half-
life; CL, systemic clearance; Cmax, maximal concentration; Tmax
,
time at which maximal concentration is measured; F, oral
bioavailability; fu, unbound fraction; DRG, dorsal root ganglion;
hCav3.2, T type voltage-dependent calcium channel, α 1H
subunit; hIKs, intermediate-conductance calcium-activated
potassium channel, known as KCa3.1; hKV1.5, voltage-gated
potassium channel type 5; hKCNQ2, potassium voltage-gated
channel, KQT-like subfamily, member 2; hTRPA1, transient
receptor potential cation channel, subfamily A, member 1;
GPCR, G-protein-coupled receptor
REFERENCES
■
(1) Catterall, W. A; Goldin, A. L.; Waxman, S. G. International Union
of Pharmacology. XLVII. Nomenclature and structure− function
relationships of voltage-gated sodium channels. Pharmacol. Rev. 2005,
57, 397−409.
(2) Ahmad, S.; Dahllund, L.; Eriksson, A. B.; Hellgren, D.; Karlsson, U.;
Lund, P.-E.; Meijer, I. A.; Meury, L.; Mills, T.; Moody, A.; Morinville, A.;
Morten, J.; O’Donnell, D.; Raynoschek, C.; Salter, H.; Rouleau, G. A.;
Krupp, J. J. A stop codon mutation in SNC9A causes lack of pain
sensation. Hum. Mol. Genet. 2007, 16, 2114−2121.
(3) Cox, J. J.; Reimann, F.; Nicholas, A. K.; Thornton, G.; Roberts, E.;
Springell, K.; Karbani, G.; Jafri, H.; Mannan, J.; Raashid, Y.; Al Gazali, L.;
Hamamy, H.; Valente, E. M.; Gorman, S.; Williams, R.; McHale, D. P.;
Wood, J. N.; Gribble, F. M.; Woods, C. G. An SCN9A channelopathy
causes congenital inability to experience pain. Nature 2006, 444, 894−
898.
(4) Goldberg, Y. P.; MacFarlane, J.; MacDonald, M. L.; Thompson, J.;
Dube, M. P.; Mattice, M.; Fraser, R.; Young, C.; Hossain, S.; Pape, T.;
Payne, B.; Radomski, C.; Donaldson, G.; Ives, E.; Cox, J.;
Younghusband, H. B.; Green, R.; Duff, A.; Boltshauser, E.; Grinspan,
G. A.; Dimon, J. H.; Sibley, B. G.; Andria, G.; Toscano, E.; Kerdraon, J.;
Bowsher, D.; Pimstone, S. N.; Samuels, M. E.; Sherrington, R.; Hayden,
M. R. Loss-of-function mutations in the NaV1.7 gene underlie congenital
indifference to pain in multiple human populations. Clin. Genet. 2007,
71, 311−319.
(5) Staud, R.; Price, D. D.; Janicke, D.; Andrade, E.; Hadjipanayis, A.
G.; Eaton, W. T.; Kaplan, L.; Wallace, M. R. Two novel mutations of
SCN9A (NaV1.7) are associated partial congenital insensivity to pain.
Eur. J. Pain 2011, 15, 223−230.
(6) Yang, Y.; Wang, Y.; Li, S.; Xu, Z.; Li, H.; Ma, L.; Fan, J.; Bu, D.; Liu,
B.; Fan, Z.; Wu, G.; Jin, J.; Ding, B.; Zhu, X.; Shen, Y. Mutations in
SCN9A, encoding a sodium channel alpha subunit, in patients with
primary erythermalgia. J. Med. Genet. 2004, 41, 171−174.
(7) Drenth, J. P.; te Morsche, R. H.; Guillet, G.; Taieb, A.; Kirby, R. L.;
Jansen, J. B. SCN9A mutations define primary erythermalgia as a
neuropathic disorder of voltage gated sodium channels. J. Invest.
Dermatol. 2005, 124, 1333−1338.
(8) Fertleman, C. R.; Baker, M. D.; Parker, K. A.; Moffatt, S.; Elmslie, F.
V.; Abrahamsen, B.; Ostman, J.; Klugbauer, N.; Wood, J. N.; Gardiner,
R. M.; Rees, M. SCN9A mutations in paroxysmal extreme pain disorder:
allelic variants underlie distinct channel defects and phenotypes. Neuron
2006, 52, 767−774.
(25) Nguyen, T.-H.; Chau, N. T. T.; Castanet, A.-S.; Nguyen, K. P. P.;
Mortier., J. First General, Direct, and Regioselective Synthesis of
Substituted Methoxybenzoic Acids by Ortho Metalation. J. Org. Chem.
2007, 72, 3419−3429.
(9) Rogers, M.; Tang, L.; Madge, D. J.; Stevens, E. B. The role of
sodium channels in neuropathic pain. Semin. Cell Dev. Biol. 2007, 17,
571−581.
(10) Zuliani, V.; Rivara, M.; Fantini, M.; Constantino, G. Sodium
channel blockers for neuropathic pain. Expert Opin. Ther. Pat. 2010, 20,
755−779.
(11) Kemp, M. I. Structural trends among second-generation voltage-
gated sodium channel blockers. Prog. Med. Chem. 2010, 49, 81−111.
(12) Bregman, H.; Berry, L.; Buchanan, J. L.; Chen, A.; Du, B.; Feric,
E.; Hierl, M.; Huang, L.; Immke, D.; Janosky, B.; Johnson, D.; Li, X.;
Ligutti, J.; Liu, D.; Malmberg, A.; Matson, D.; McDermott, J.; Miu, P.;
Nguyen, H. N.; Patel, V. F.; Waldon, D.; Wilenkin, B.; Zheng, X. M.;
Zou, A.; McDonough, S. I.; DiMauro, E. F. Identification of a potent,
(26) Othman, M.; Decroix, B. Synthesis of phthalimidine-3-
carboxylate and benzopyrroloindolizine from N-(pyrrol-2-yl)-
phthalimidine-3-carboxylate. Synth. Commun. 1996, 26, 2803−2809.
(27) Trivedi, S.; Dekermendjian, K.; Julien, R.; Huang, J.; Lund, P.-E.;
Krupp, J.; Kronqvist, R.; Larsson, O.; Bostwick, R. Cellular HTS assays
for pharmacological characterization of NaV1.7 modulators. Assay Drug
Dev. Technol. 2008, 6, 167−179.
(28) Xu, Z-Q. D.; Zhang, X.; Grillner, S.; Hokfelt, T. Electro-
̈
physiological studies on rat dorsal root ganglion neurons after peripheral
axotomy: Changes in responses to neuropeptides. Proc. Natl. Acad. Sci.
U.S.A. 1997, 94, 13262−13266.
6879
dx.doi.org/10.1021/jm300623u | J. Med. Chem. 2012, 55, 6866−6880