ACS Medicinal Chemistry Letters
Letter
(19) Heimburg, T.; Chakrabarti, A.; Lancelot, J.; Marek, M.; Melesina,
J.; Hauser, A. T.; Shaik, T. B.; Duclaud, S.; Robaa, D.; Erdmann, F.;
Schmidt, M.; Romier, C.; Pierce, R. J.; Jung, M.; Sippl, W. Structure-
Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from
Schistosoma mansoni for the Treatment of Schistosomiasis. J. Med.
Chem. 2016, 59, 2423−35.
(20) Balasubramanian, S.; Ramos, J.; Luo, W.; Sirisawad, M.; Verner,
E.; Buggy, J. J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor
PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008, 22,
1026−34.
(21) Hsieh, C. L.; Ma, H. P.; Su, C. M.; Chang, Y. J.; Hung, W. Y.; Ho,
Y. S.; Huang, W. J.; Lin, R. K. Alterations in histone deacetylase 8 lead to
cell migration and poor prognosis in breast cancer. Life Sci. 2016, 151,
7−14.
(22) Krennhrubec, K.; Marshall, B. L.; Hedglin, M.; Verdin, E.; Ulrich,
S. M. Design and evaluation of ’Linkerless’ hydroxamic acids as selective
HDAC8 inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2874−8.
(23) Olson, D. E.; Wagner, F. F.; Kaya, T.; Gale, J. P.; Aidoud, N.;
Davoine, E. L.; Lazzaro, F.; Weiwer, M.; Zhang, Y. L.; Holson, E. B.
Discovery of the first histone deacetylase 6/8 dual inhibitors. J. Med.
Chem. 2013, 56, 4816−20.
REFERENCES
■
(1) Jenuwein, T.; Allis, C. D. Translating the histone code. Science
2001, 293, 1074−80.
(2) Gardner, K. E.; Allis, C. D.; Strahl, B. D. Operating on chromatin, a
colorful language where context matters. J. Mol. Biol. 2011, 409, 36−46.
(3) Delcuve, G. P.; Khan, D. H.; Davie, J. R. Roles of histone
deacetylases in epigenetic regulation: emerging paradigms from studies
with inhibitors. Clin. Epigenet. 2012, 4, 5.
(4) Xu, W. S.; Parmigiani, R. B.; Marks, P. A. Histone deacetylase
inhibitors: molecular mechanisms of action. Oncogene 2007, 26, 5541−
52.
(5) Falkenberg, K. J.; Johnstone, R. W. Histone deacetylases and their
inhibitors in cancer, neurological diseases and immune disorders. Nat.
Rev. Drug Discovery 2014, 13, 673−691.
(6) Johnstone, R. W. Histone-deacetylase inhibitors: novel drugs for
the treatment of cancer. Nat. Rev. Drug Discovery 2002, 1, 287−299.
(7) Marks, P.; Rifkind, R. A.; Richon, V. M.; Breslow, R.; Miller, T.;
Kelly, W. K. Histone deacetylases and cancer: causes and therapies. Nat.
Rev. Cancer 2001, 1, 194−202.
(8) Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the
promise of epigenetic (and more) treatments for cancer. Nat. Rev.
Cancer 2006, 6, 38−51.
(24) Rodrigues, D. A.; Ferreira-Silva, G. A.; Ferreira, A. C.; Fernandes,
R. A.; Kwee, J. K.; Sant’Anna, C. M.; Ionta, M.; Fraga, C. A. Design,
Synthesis, and Pharmacological Evaluation of Novel N-Acylhydrazone
Derivatives as Potent Histone Deacetylase 6/8 Dual Inhibitors. J. Med.
Chem. 2016, 59, 655−70.
(9) Li, Z.; Zhu, W. G. Targeting histone deacetylases for cancer
therapy: from molecular mechanisms to clinical implications. Int. J. Biol.
Sci. 2014, 10, 757−70.
(10) Dovey, O. M.; Foster, C. T.; Cowley, S. M. Histone deacetylase 1
(HDAC1), but not HDAC2, controls embryonic stem cell differ-
entiation. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 8242−8247.
(11) Deardorff, M. A.; Bando, M.; Nakato, R.; Watrin, E.; Itoh, T.;
Minamino, M.; Saitoh, K.; Komata, M.; Katou, Y.; Clark, D.; Cole, K. E.;
De Baere, E.; Decroos, C.; Di Donato, N.; Ernst, S.; Francey, L. J.;
Gyftodimou, Y.; Hirashima, K.; Hullings, M.; Ishikawa, Y.; Jaulin, C.;
Kaur, M.; Kiyono, T.; Lombardi, P. M.; Magnaghi-Jaulin, L.; Mortier, G.
R.; Nozaki, N.; Petersen, M. B.; Seimiya, H.; Siu, V. M.; Suzuki, Y.;
Takagaki, K.; Wilde, J. J.; Willems, P. J.; Prigent, C.; Gillessen-Kaesbach,
G.; Christianson, D. W.; Kaiser, F. J.; Jackson, L. G.; Hirota, T.; Krantz, I.
D.; Shirahige, K. HDAC8 mutations in Cornelia de Lange syndrome
affect the cohesin acetylation cycle. Nature 2012, 489, 313−7.
(12) Bhaskara, S.; Knutson, S. K.; Jiang, G.; Chandrasekharan, M. B.;
Wilson, A. J.; Zheng, S.; Yenamandra, A.; Locke, K.; Yuan, J.-l.; Bonine-
Summers, A. R.; Wells, C. E.; Kaiser, J. F.; Washington, M. K.; Zhao, Z.;
Wagner, F. F.; Sun, Z.-W.; Xia, F.; Holson, E. B.; Khabele, D.; Hiebert, S.
W. Hdac3 is essential for the maintenance of chromatin structure and
genome stability. Cancer Cell 2010, 18, 436−447.
(13) Balasubramanian, S.; Verner, E.; Buggy, J. J. Isoform-specific
histone deacetylase inhibitors: the next step? Cancer Lett. 2009, 280,
211−21.
(14) Lane, A. A.; Chabner, B. A. Histone deacetylase inhibitors in
cancer therapy. J. Clin. Oncol. 2009, 27, 5459−68.
(15) Oehme, I.; Deubzer, H. E.; Wegener, D.; Pickert, D.; Linke, J. P.;
Hero, B.; Kopp-Schneider, A.; Westermann, F.; Ulrich, S. M.; von
Deimling, A.; Fischer, M.; Witt, O. Histone deacetylase 8 in
neuroblastoma tumorigenesis. Clin. Cancer Res. 2009, 15, 91−9.
(16) Rettig, I.; Koeneke, E.; Trippel, F.; Mueller, W. C.; Burhenne, J.;
Kopp-Schneider, A.; Fabian, J.; Schober, A.; Fernekorn, U.; von
Deimling, A.; Deubzer, H. E.; Milde, T.; Witt, O.; Oehme, I. Selective
inhibition of HDAC8 decreases neuroblastoma growth in vitro and in
vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis.
2015, 6, e1657.
(25) Negmeldin, A. T.; Padige, G.; Bieliauskas, A. V.; Pflum, M. K.
Structural Requirements of HDAC Inhibitors: SAHA Analogues
Modified at the C2 Position Display HDAC6/8 Selectivity. ACS Med.
Chem. Lett. 2017, 8, 281−286.
(26) Brunsteiner, M.; Petukhov, P. A. Insights from comprehensive
multiple receptor docking to HDAC8. J. Mol. Model. 2012, 18, 3927−
3939.
(27) Tabackman, A. A.; Frankson, R.; Marsan, E. S.; Perry, K.; Cole, K.
E. Structure of ’linkerless’ hydroxamic acid inhibitor-HDAC8 complex
confirms the formation of an isoform-specific subpocket. J. Struct. Biol.
2016, 195, 373−8.
(28) Dowling, D. P.; Gantt, S. L.; Gattis, S. G.; Fierke, C. A.;
Christianson, D. W. Structural studies of human histone deacetylase 8
and its site-specific variants complexed with substrate and inhibitors.
Biochemistry 2008, 47, 13554−63.
(29) Harding, M. M. The geometry of metal-ligand interactions
relevant to proteins. II. Angles at the metal atom, additional weak metal-
donor interactions. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2000, 56,
857−67.
(30) Rashkin, M. J.; Waters, M. L. Unexpected substituent effects in
offset pi-pi stacked interactions in water. J. Am. Chem. Soc. 2002, 124,
1860−1.
(31) Sinnokrot, M. O.; Sherrill, C. D. Substituent effects in pi-pi
interactions: sandwich and T-shaped configurations. J. Am. Chem. Soc.
2004, 126, 7690−7.
(32) Ghose, A. K.; Herbertz, T.; Hudkins, R. L.; Dorsey, B. D.;
Mallamo, J. P. Knowledge-Based, Central Nervous System (CNS) Lead
Selection and Lead Optimization for CNS Drug Discovery. ACS Chem.
Neurosci. 2012, 3, 50−68.
(33) Flipo, M.; Beghyn, T.; Charton, J.; Leroux, V. A.; Deprez, B. P.;
Deprez-Poulain, R. F. A library of novel hydroxamic acids targeting the
metallo-protease family: design, parallel synthesis and screening. Bioorg.
Med. Chem. 2007, 15, 63−76.
(17) Durst, K. L.; Lutterbach, B.; Kummalue, T.; Friedman, A. D.;
Hiebert, S. W. The inv(16) fusion protein associates with corepressors
via a smooth muscle myosin heavy-chain domain. Mol. Cell. Biol. 2003,
23, 607−19.
(18) Kang, Y.; Nian, H.; Rajendran, P.; Kim, E.; Dashwood, W. M.;
Pinto, J. T.; Boardman, L. A.; Thibodeau, S. N.; Limburg, P. J.; Lohr, C.
V.; Bisson, W. H.; Williams, D. E.; Ho, E.; Dashwood, R. H. HDAC8 and
STAT3 repress BMF gene activity in colon cancer cells. Cell Death Dis.
2014, 5, e1476.
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX