Job/Unit: O20292
/KAP1
Date: 23-04-12 11:49:03
Pages: 6
Dirhodium(II) Complexes of 2-(Sulfonylimino)pyrrolidine
[7]
[8]
H. T. Chifotides, K. R. Dunbar in Multiple Bonds Between
Metal Atoms, 3rd ed. (Eds.: F. A. Cotton, C. Murillo, R. A.
Walton), Springer-Science & Business Media, Inc., New York,
2005, chapter 12, pp. 465–589.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, characterization data and 1H and 13C
1
NMR spectra of all new compounds, as well as H NMR spectra
of the crude reaction mixtures (Table 1).
To the best of our knowledge, the catalytic application of neu-
tral N,N-ligated dirhodium(II) complexes has not been de-
scribed. For silylformylation of alkynes catalyzed by the tetra-
cationic complex [Rh2(MeCN)2(Naft)4](BF4)4 (Naft = μ-1,8-
naphthyridine), see: a) M. Basato, A. Biffis, G. Martinati, C.
Tubaro, C. Graiff, T. Antonio, A. A. Laura, A. M. Caporusso,
J. Organomet. Chem. 2006, 691, 3464–3471; b) A. Biffis, L.
Conte, C. Tubaro, M. Basato, L. A. Aronica, A. Cuzzola,
A. M. Caporusso, J. Organomet. Chem. 2010, 695, 792–798.
For the synthesis of five-membered cyclic sulfonylamidines,
also called 2-(sulfonylimino)pyrrolidines, see: M. Yao, C.-D.
Lu, Org. Lett. 2011, 13, 2782–2785 and references cited therein.
Attempts to synthesize the Rh2(sip)4 complexes derived from
2-[(4-nitrophenyl)sulfonylimino]pyrrolidine and 2-(trifluorome-
thanesulfonylimino)pyrrolidine under the standard conditions
proved unsuccessful. Moreover, the reactions of six- and seven-
membered cyclic sulfonylamidines with dirhodium(II) acetate
were inefficient.
Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (20972182 and 21172251), the “Western Light” pro-
gram (XBBS200820) and the Chinese Academy of Sciences.
[9]
[1] a) R. A. Sheldon, J. K. Kochi in Metal-Catalyzed Oxidation of
Organic Compounds, Academic Press, New York, 1981; b)
Modern Oxidation Methods, 2nd ed. (Ed.: J.-E. Bäckvall),
Wiley, Weinheim, 2010.
[2] For transition-metal-free benzylic oxidations, see: T. Dohi, N.
Takenaga, A. Goto, H. Fujioka, Y. Kita, J. Org. Chem. 2008,
73, 7365–7368 and references cited therein.
[3] a) M. Nakanishi, C. Bolm, Adv. Synth. Catal. 2007, 349, 861–
864 and references cited therein; b) Y. Bonvin, E. Callens, I.
Larrosa, D. A. Henderson, J. Oldham, A. J. Burton, A. G. M.
Barrett, Org. Lett. 2005, 7, 4549–4552 and references cited
therein.
[4] a) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev.
2010, 110, 704–724; b) H. M. L. Davies, R. E. J. Beckwith,
Chem. Rev. 2003, 103, 2861–2904; c) M. P. Doyle, J. Org. Chem.
2006, 71, 9253–9260.
[10]
[11]
CCDC-859713 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[12] For several recent examples of catalytic benzylic oxidations in
water by using tBuOOH and water-soluble transition-metal
catalysts, see: C. S. Yi, K.-H. Kwon, D. W. Lee, Org. Lett. 2009,
11, 1567–1569 and references cited therein.
[13] J. Muzart, A. N’Ait Ajjou, J. Mol. Catal. 1994, 92, 277.
[14] M. P. Doyle, A. J. Catino, H. Choi, J. M. Nichols, U. S. Pat.
93638, 2009.
[15] Cyclic voltammetry experiments showed that 2a–c undergo re-
versible one-electron oxidation at E1/2 = 570 mV, 546 mV and
524 mV vs. Ag/AgCl, respectively. The UV/Vis spectra of 2a–c
show low-energy absorption peaks at 969 nm, 935 nm and
942 nm, respectively, upon addition of TBHP. See the Support-
ing Information for details.
[5] For benzylic oxidations, see: A. J. Catino, J. M. Nichols, H.
Choi, S. Gottipamula, M. P. Doyle, Org. Lett. 2005, 7, 5167–
5170.
[6] For the crystal structure of Rh2(cap)4, see: J. M. Nichols,
Ph. D. dissertation, University of Maryland, 2008; for allylic
and propargylic oxidations, see: a) A. J. Catino, R. E. Forslund,
M. P. Doyle, J. Am. Chem. Soc. 2004, 126, 13622–13623; b)
H. Choi, M. P. Doyle, Org. Lett. 2007, 9, 5349–5352; c) E. C.
McLaughlin, H. Choi, K. Wang, G. Chiou, M. P. Doyle, J. Org.
Chem. 2009, 74, 730–738; d) E. C. McLaughlin, M. P. Doyle,
J. Org. Chem. 2008, 73, 4317–4319; for amine oxidations, see:
H. Choi, M. P. Doyle, Chem. Commun. 2007, 745–747.
Received: March 9, 2012
Published Online:
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5