temperatures led to higher rates of gas uptake. It appears from
experiments with DME that the rate of gas permeation is signifi-
cantly affected by the nature of the solvent.
Notes and references
1 (a) P. M. Jordan, Curr. Opin. Struct. Biol., 1994, 4, 902–911;
(b) M. T. Wilson and B. J. Reeder, Exp. Physiol., 2008, 93, 128–132.
2 (a) A. Eschenmoser, Angew. Chem., Int. Ed. Engl., 1988, 27, 5–39;
(b) R. H. Abeles and D. Dolphin, Acc. Chem. Res., 1976, 9, 114–120.
3 H. K. Lichtenthaler, Methods Enzymol., 1987, 148, 350–382.
4 P. A. Riley, Int. J. Biochem. Cell Biol., 1997, 29, 1235–1239.
5 A. V. Susekov and N. V. Khokhlova, Cardiovasc. Ther. Prevent., 2011,
10, 103–112.
6 (a) S. Faivre, G. Demetri, W. Sargent and E. Raymond, Nat. Rev. Drug
Discovery, 2007, 6, 734–745; (b) L. Q. M. Chow and S. G. Eckhardt,
J. Clin. Oncol., 2007, 25, 884–896.
7 R. K. Rajpal, B. B. Cooperman and G. Ketorolac Study, J. Refract. Surg.,
1999, 15, 661–667.
8 J. E. Levinson, E. Brewer, V. Hanson, J. Baum, C. Fink, J. Schaller and
P. S. Lietman, J. Pediatr., 1977, 91, 799–804.
Fig. 6 Plots of ammonia concentration in DME against residence time
(in tube-in-tube) at various temperatures (same scale as Fig. 5).
9 (a) A. F. Diaz, J. I. Castillo, J. A. Logan and W. Y. Lee, J. Electroanal.
Chem., 1981, 129, 115–132; (b) K. K. Kanazawa, A. F. Diaz,
R. H. Geiss, W. D. Gill, J. F. Kwak, J. A. Logan, J. F. Rabolt and
G. B. Street, Chem. Commun., 1979, 854–855.
residence-loop was at a higher temperature. What is not clear is
the exact reason for this increased permeation/uptake at lower
temperature. This could conceivably involve morphological
changes within the membrane itself (whose glass transition
temperature is 240 °C), a higher concentration of ammonia in the
gas phase, or an inherent rate increase for gas transfer across the
gas–liquid interface (or other effect or combination of effects).
To investigate what effect the nature of the solvent has on this
phenomena, we carried out the same measurements using
dimethoxyethane (DME) as solvent. The results are shown in
Fig. 6. As with MeOH, the concentration of ammonia varies
approximately linearly with residence time, and is faster at lower
temperature. However, it appears (from the more shallow gradi-
ents) that the rate of permeation/uptake into DME is lower than
in MeOH. Further investigation into these permeation/uptake
phenomena is clearly needed in order to fully delineate the
factors involved. Having established that inline titration is a
useful means of rapidly acquiring permeation/solubility data, we
are now using the technique to explore this further and will
report our findings in due course.
10 (a) V. Estevez, M. Villacampa and J. Carlos Menendez, Chem. Soc. Rev.,
2010, 39, 4402–4421; (b) C. Schmuck and D. Rupprecht, Synthesis,
2007, 3095–3110; (c) N. Ono, Heterocycles, 2008, 75, 243–284.
11 (a) C. Paal, Ber. Dtsch. Chem. Ges., 1884, 17, 2756–2767; (b) L. Knorr,
Ber. Dtsch. Chem. Ges., 1884, 17, 1635–1642; (c) V. Amarnath,
D. C. Anthony, K. Amarnath, W. M. Valentine, L. A. Wetterau and
D. G. Graham, J. Org. Chem., 1991, 56, 6924–6931; (d) R. U. Braun,
K. Zeitler and T. J. J. Müller, Org. Lett., 2001, 3, 3297–3300.
12 (a) D. Rooke, Chem. Eng.-London, 1987, 56–56; (b) J. Drahos and
J. Cermak, Chem. Eng. Process., 1989, 26, 147–164.
13 Recent reviews and examples:
(a) J. Wegner, S. Ceylan and
A. Kirschning, Adv. Synth. Catal., 2012, 354, 17–57; (b) C. Wiles and
P. Watts, Chem. Commun., 2011, 47, 6512–6535; (c) R. L. Hartman,
J. P. McMullen and K. E. Jensen, Angew. Chem., Int. Ed., 2011, 50,
7502–7519; (d) D. Webb and T. F. Jamison, Chem. Sci., 2010, 1, 675–
680; (e) T. Razzaq and C. O. Kappe, Chem.–Asian. J., 2010, 5, 1274–
1289; (f) J. I. Yoshida, Chem. Rec., 2010, 10, 332–341; (g) V. Hessel,
Chem. Eng. Technol., 2009, 32, 1655–1681; (h) D. L. Browne,
I. R. Baxendale and S. V. Ley, Tetrahedron, 2011, 67, 10296–10303;
(i) X. Y. Mak, P. Laurino and P. H. Seeberger, Beilstein J. Org. Chem.,
2009, 5, # 19; ( j) M. Brasholz, B. A. Johnson, J. M. Macdonald,
A. Polyzos, J. Tsanaktsidis, S. Saubern, A. B. Holmes and J. H. Ryan,
Tetrahedron, 2010, 66, 6445–6449; (k) D. L. Browne, M. Baumann, B.
H. Harji, I. R. Baxendale and S. V. Ley, Org. Lett., 2011, 13, 3312–3315;
(l) B. D. A. Hook, W. Dohle, P. R. Hirst, M. Pickworth, M. B. Berry and
K. I. Booker-Milburn, J. Org. Chem., 2005, 70, 7558–7564;
(m) A. R. Bogdan, S. L. Poe, D. C. Kubis, S. J. Broadwater and
D. T. McQuade, Angew. Chem., Int. Ed., 2009, 48, 8547–8550;
(n) D. L. Browne, B. J. Deadman, R. Ashe, I. R. Baxendale and
S. V. Ley, Org. Process Res. Dev., 2011, 15, 693–697; (o) P. Koos,
D. L. Browne and S. V. Ley, Green Process Synth., 2012, 1, 11–18.
14 S. V. Ley, I. R. Baxendale, R. N. Bream, P. S. Jackson, A. G. Leach,
D. A. Longbottom, M. Nesi, J. S. Scott, R. I. Storer and S. J. Taylor,
J. Chem. Soc., Perkin Trans. 1, 2000, 3815–4195.
15 M. O’Brien, R. Denton and S. V. Ley, Synthesis, 2011, 1157–1192.
16 (a) J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno,
T. Kitamori and S. Kobayashi, Science, 2004, 304, 1305–1308;
(b) T. Fukuyama, T. Rahman, N. Kamata and I. Ryu, Beilstein J. Org.
Chem., 2009, 5, # 34; (c) M. Irfan, T. N. Glasnov and C. O. Kappe, Org.
Lett., 2011, 13, 984–987; (d) R. D. Chambers, M. A. Fox, G. Sandford,
J. Trmcic and A. Goeta, J. Fluorine Chem., 2007, 128, 29–33;
(e) S. Hubner, U. Bentrup, U. Budde, K. Lovis, T. Dietrich, A. Freitag,
L. Kupper and K. Jahnisch, Org. Process Res. Dev., 2009, 13, 952–960;
(f) Y. Wada, M. A. Schmidt and K. F. Jensen, Ind. Eng. Chem. Res.,
2006, 45, 8036–8042; (g) E. R. Murphy, J. R. Martinelli, N. Zaborenko,
S. L. Buchwald and K. F. Jensen, Angew. Chem., Int. Ed., 2007, 46,
1734–1737; (h) M. Hamano, K. D. Nagy and K. F. Jensen, Chem.
Commun., 2012, 48, 2086–2088; (i) P. W. Miller, L. E. Jennings,
Conclusion
We have developed an efficient, inexpensive and operationally
simple flow system for the Paal–Knorr synthesis of substituted
pyrroles from 1,4-diketones using a Teflon AF-2400 based tube-
in-tube reactor as a means to effect gas–liquid contact. A tube-
in-tube configuration that has the gas in the central tube and the
liquid on the outside facilitates efficient thermal contact and
allows the liquid to be heated or cooled as appropriate. An
optimal flow setup for the reaction had gas-injection in the tube-
in-tube device taking place at a lower temperature and the sub-
sequent reaction in a residence-loop proceeding at a higher
temperature. A simple colourimetric in-line titration technique
was used to investigate the relationship between ammonia con-
centration downstream of the tube-in-tube device and the
temperature of the device and the residence time of the solvent
in the device. The concentrations, which varied approximately
linearly with residence time, did not approach saturation. Lower
5778 | Org. Biomol. Chem., 2012, 10, 5774–5779
This journal is © The Royal Society of Chemistry 2012