Palladacycle-catalyzed esterification of aldehydes with alcohols
Acknowledgments
Conclusions
We are grateful to the National Natural Science Foundation of China
(Nos. 20772114, 21172200) and the Innovation Fund for Outstanding
Scholar of Henan Province (Nos. 0621001100) and the Education
Department of Henan province science and technology research
projects (No.13A150681) for financial support of this research.
In summary, we have described a highly efficient catalytic sys-
tem for the reaction of a variety of aldehydes with alcohols by
using cyclopalladated ferrocenylimine (I) as the catalyst and
PPh3 as a ligand. A wide range of substrates could be used in
this system: aryldehydes and aliphatic aldehydes including
chain aldehyde and cyclohexyl aldehyde all work well with
primary, secondary alcohols and benzyl alcohols, affording
moderate to excellent yields. Further studies on extending
the application of this reaction in organic synthesis are ongoing
in our laboratory.
References
[1] a) K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. P. Kumar,
Chem. Rev. 2009, 109, 2551;b) J. Otera, Esterification: Methods, Reac-
tions and Applications, Wiley-VCH, Weinheim, 2003.
[2] J. C. Craig, E. C. Horning, J. Org. Chem. 1960, 25, 2098.
[3] R. Gopinath, B. K. Patel, Org. Lett. 2000, 2, 577.
[4] R. Gopinath, A. R. Paital, B. K. Patel, Tetrahedron Lett. 2002, 43, 5123.
[5] J. H. Espenson, Z. Zhu, T. H. Zauche, J. Org. Chem. 1999, 64, 1191.
[6] a) B. R. Travis, M. Sivakumar, G. O. Hollist, B. Borhan, Org. Lett. 2003, 5, 1031;
b) B. E. Maki, K. A. Scheidt, Org. Lett. 2008, 10, 4331.
[7] C. Liu, S. Tang, L. W. Zheng, D. Liu, H. Zhang, A. Lei, Angew. Chem. Int.
Ed. 2012, 51, 5662.
[8] S. Gowrisankar, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2011,
50, 5139.
[9] a) J. Ma, X. L. Cui, D. J. Yang, J. L. Wu, M. P. Song, Y. J. Wu, Appl.
Organomet. Chem. 2008, 22, 624; b) Y. J. Wu, F. Yang, J. L. Zhang, X.
L. Cui, J. F. Gong, M. P. Song, T. S. Li, Chin. Sci. Bull. 2010, 55, 2784; c)
J. L. Zhang, F. Yang, Y. J. Wu, Appl. Organomet. Chem. 2011, 25, 675;
d) A. J. Yu, X. D. Li, D. P. Peng, Y. J. Wu, J. B. Chang, Appl. Organomet.
Chem. 2012, 26, 301.
[10] S. Q. Huo, Y. J. Wu, C. X. Du, Y. Zhu, H. Z. Yuan, X. A. Mao,
J. Organomet. Chem. 1994, 483, 139.
[11] K. Ouyang, Z. Xi, Acta Chim. Sinica 2013, 71, 13.
[12] Q. Liu, Y. Lan, J. Liu, G. Li, Y. D. Wu, A. Lei, J. Am. Chem. Soc. 2009, 131,
10201.
Experimental
General
1H and 13C NMR spectra were recorded on a Bruker DPX-400
spectrometer with CDCl3 as the solvent and tetramethylsilane
as an internal standard. Melting points were measured using a
WC-1 microscopic apparatus and are uncorrected. Gas chromato-
graphic analysis was performed on an Agilent 7890D gas chro-
matograph. High-resolution mass spectra were measured with
electrospray ionization (ESI). Ethyl acetate and petroleum ether
(analytical grade) were used for column chromatography without
further purification. Catalysts I and II were prepared according to
Huo et al.[10] Other solvents were purified according to the stan-
dard methods. Other chemicals were obtained from commercial
sources and used as received, unless otherwise noted.
[13] Y. Mansoori, Chin. J. Chem. 2007, 25, 1878.
[14] S. S. Weng, C. S. Ke, F. K. Chen, Tetrahedron 2011, 67, 1640.
[15] T. Iwasaki, Y. Maegawa, Y. Hayashi, T. Ohshima, K. Mashima, J. Org.
Chem. 2008, 73, 5147.
General Procedure for Synthesis of a Series of Esters
[16] A. C. Sather, O. B. Berryman, D. Ajami, J. Rebek Jr., Tetrahedron Lett.
2011, 52, 2100.
Aldehyde (2 mmol), alcohol (3 mmol), Cs2CO3 (2 mmol), Bn-Cl
(2 mmol) and catalyst (0.0625 mol%) were dissolved in dry THF
(2 ml) in a 10 ml vial and heated at a specific temperature under
N2 for 12 h. After the reaction was complete the mixture was
quenched with water. The mixture was diluted with ethyl acetate
(10 ml), filtered through a pad of Celite, and followed by extrac-
tion with ethyl acetate three times. The combined organic layer
was dried over anhydrous Na2SO4, filtered and evaporated under
reduced pressure. The residue was purified by flash chromatog-
raphy on silica gel (ethyl acetate/petroleum ether) to give the
desired product.
[17] Q. Liu, G. Li, J. He, J. Liu, P. Li, A. Lei, Angew. Chem. Int. Ed. 2010, 49, 3371.
[18] X. F. Wu, C. Darcel, Eur. J. Org. Chem. 2009, 48, 1144.
[19] K. Smith, M. D. Ajarim, G. A. El-Hiti, Catal. Lett. 2010, 134, 270.
[20] A. F. Patrocinio, P. J. S. Moran, Synth. Commun. 2000, 30, 1419.
[21] E. J. Cho, S. L. Buchwald, Science 2010, 328, 1679.
[22] J. E. Wona, H. K. Kima, J. J. Kima, H. S. Yima, M. J. Kima, S. B. Kanga,
H. A. Chunga, S. G. Leeb, Y. J. Yoona, Tetrahedron 2007, 63, 12720.
[23] M. Bhuiyan, H. Delower, Eur. J. Org. Chem. 2010, 24, 4662.
[24] D. Das, Org. Lett. 2004, 6, 4133.
[25] Y. Zhao, W. L. Yim, C. K. Tan, Y. Y. Yeung, Org. Lett. 2011, 13, 4308.
[26] O. A. Blackburn, B. J. Coe, J. Fielden, M. Helliwell, J. J. W. McDouall,
M. G. Hutchings, Inorg. Chem. 2010, 49, 9136.
[27] Y. Oda, K. Hirano, T. Satoh, S. Kuwabata, M. Miura, Tetrahedron Lett.
2011, 52, 5392.
[28] H. W. Pinnick, E. Fernandez, J. Org. Chem. 1979, 44, 2810.
[29] M. Hatano, M. Hatano, Y. Furuya, T. Shimmura, K. Moriyama,
S. Kamiya, T. Maki, K. Ishihara, Org. Lett. 2011, 13, 426.
[30] N. Nowrouzi, A. M. Mehranpour, J. A. Rad, Tetrahedron 2010,
66, 9596.
[31] R. C. Cambie, B. G. Lindsay, P. S. Rutledge, P. D. Woodgate, J. Chem.
Soc. Chem. Commun. 1978, 21, 919.
[32] T. Ohshima, T. Iwasaki, Y. Maegawa, A. Yoshiyama, K. Mashima, J. Am.
Chem. Soc. 2008, 130, 2944.
[33] G. V. M. Sharma, C. G. Reddy, P. R. Krishna, J. Org. Chem. 2003,
68, 4574.
[34] G. Andreas, F. Doris, S. Christoph, G. G. Daniel, Adv. Synth. Catal.
2003, 345, 1017.
Butyl 3,5-dimethyl benzoate (3j)
Colorless oil; 1HNMR (400MHz, CDCl3): δ = 7.69 (s, 2H of 2- and 6- on
C6H3), 7.20 (s, 1H of 4- on C6H3), 4.34 (d, 2 H, O―CH2, J = 6.7Hz), 2.40
(s, 6 H, aryl-CH3), 1.82–1.75 (m, 2 H, CH3CH2CH2), 1.56–1.47(m, 2 H,
CH3CH2CH2), 1.02 (t, 3 H, C―CH3, J = 7.4 Hz); 13C NMR (100MHz,
CDCl3): δ = 167.1 (C O), 137.9 (C of 3- on C6H3) , 134.5 (C of 4- on
C6H3), 130.4 (C―C O), 127.3 (C of 2- and 4- on C6H3), 64.7
(O―CH2), 30.9 (CH3CH2CH2), 21.2 (aryl-CH3), 19.3 (CH3CH2CH2),
13.8 (CH3CH2CH2). HRMS-ESI (m/z): [M+Na]+ calcd for C13H18NaO2+:
229.1199; found: 229.1205.
[35] Y. Hoshimoto, M. Ohashi, S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 4668.
The products 3a,[12] 3b,[13] 3c,[14] 3d,[15] 3e,[16] 3f,[17] 3g,[18]
3h,[8] 3i,[19] 3k,[20] 3l,[21] 3m,[22] 3n,[23] 3o,[17] 3p,[24] 3q,[25] 3r,[26]
3s,[27] 3t,[28] 3u,[29] 3v,[7] 3w,[30] 3x,[31] 3y,[32] 3z,[33] 3δ[34] and
3ϕ[35] were characterized by comparing their 1H NMR and13C
NMR spectra with those mentioned in the references.
Supporting Information
Additional supporting information may be found in the online
version of this article at the publisher’s web site.
Appl. Organometal. Chem. 2014, 28, 44–47
Copyright © 2013 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc