4 (a) T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974;
(b) V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda
and K. B. Sharpless, J. Am. Chem. Soc., 1981, 103, 6237.
5 For examples see: (a) S. Hashiguchi, A. Fujii, K. Haack, K. Matsumara,
T. Ikariya and R. Noyori, Angew. Chem., Int. Ed. Engl., 1997, 36, 288;
(b) Y. Iura, S. Tsutomu and K. Ogasawara, Tetrahedron Lett., 1999,
40, 5735.
6 For an example see: (a) W. Oppolzer and R. Radinov, Helv. Chim.
Acta, 1992, 75, 170. For reviews see; (b) P. Wipf and C. Kendall,
Chem.–Eur. J., 2002, 8, 1778; (c) P. Wipf and R. L. Nunes,
Tetrahedron, 2004, 60, 1269; (d) E. Skucas, M. Ngai,
V. Komanduri and M. J. Krische, Acc. Chem. Res., 2007, 40, 1394.
7 For reviews see: (a) H. C. Brown and P. V. Ramachandran, Acc.
Chem. Res., 1992, 25, 16; (b) E. J. Corey and C. J. Helal, Angew.
Chem., Int. Ed., 1998, 37, 1986.
8 (a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994, ch. 2; (b) G. Shang, W. Li and X. Zhang, in
Catalytic Asymmetric Synthesis, ed. I. Ojima, John Wiley & Sons,
Hoboken, NJ, 3rd edn, 2010, ch. 7, pp. 343–436; (c) in The
Handbook of Homogeneous Hydrogenation, ed. J. G. de Vries and
C. J. Elsevier, Wiley-VCH, Weinheim, 2007; (d) R. Noyori and
T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40; (e) W. Tang and
X. Zhang, Chem. Rev., 2003, 103, 3029; (f) W. S. Knowles, Angew.
Chem., Int. Ed., 2002, 41, 1998; (g) R. Noyori, Angew. Chem., Int.
Ed., 2002, 41, 2008; (h) A. J. Minnaard, B. L. Feringa, L. Lefort and
G. J. de Vries, Acc. Chem. Res., 2007, 40, 1267; (i) W. Zhang, Y. Chi
and X. Zhang, Acc. Chem. Res., 2007, 40, 1278; (j) N. B. Johnson,
I. C. Lennon, P. H. Moran and J. A. Ramsden, Acc. Chem. Res.,
2007, 40, 1291; (k) F. D. Klingler, Acc. Chem. Res., 2007, 40, 1367;
(l) D. J. Ager, A. H. M. de Vries and J. G. de Vries, Chem. Soc. Rev.,
2012, 41, 3340.
9 For representative references see: (a) T. Ohkuma, H. Ooka,
T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1995, 117, 10417;
(b) T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa,
K. Murata, E. Katayama, T. Yokozawa, T. Ikariya and
R. Noyori, J. Am. Chem. Soc., 1998, 120, 13529; (c) N. Arai,
K. Azuma, N. Nii and T. Ohkuma, Angew. Chem., Int. Ed., 2008,
47, 7457.
10 T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1995, 117, 2675.
11 D. J. Ager and S. A. Laneman, Tetrahedron: Asymmetry, 1997,
8, 3327.
12 For an example of carbonyl-selective asymmetric hydrogenation of
tri-substituted g,d-unsaturated b-keto ester with partial conversion
see: E. A. Reiff, S. K. Nair, B. S. N. Reddy, J. Inagaki, J. T. Henri,
J. F. Greiner and G. I. Georg, Tetrahedron Lett., 2004, 45, 5845.
For an example of the asymmetric transfer hydrogenation of a
di-substituted g,d-unsaturated b-keto ester see: D. Cartigny,
K. Puntener, T. Ayad, M. Scalone and V. Ratovelomanana-Vidal,
Org. Lett., 2010, 12, 3788.
13 For recent results see: (a) W. Li, X. Ma, W. Fan, X. Tao, X. Li,
X. Xie and Z. Zhang, Org. Lett., 2011, 13, 3876; (b) W. Fan, W. Li,
X. Ma, X. Tao, X. Li, Y. Yao, X. Xie and Z. Zhang, J. Org. Chem.,
2011, 76, 9444; (c) X. Tao, W. Li, X. Ma, X. Li, W. Fan, X. Xie
and Z. Zhang, J. Org. Chem., 2012, 77, 612; (d) Q. Meng, L. Zhu
and Z. Zhang, J. Org. Chem., 2008, 73, 7209.
14 For examples of asymmetric hydrogenation of unconjugated
olefinic b-keto esters see: (a) D. F. Taber and L. J. Silverberg,
Tetrahedron Lett., 1991, 32, 4227; (b) J. P. Genet, C. Pinel,
V. Ratovelomanana-Vidal, S. Mallart, M. X. Pfister, L. Bischoff,
M. C. Cano De Andrade, S. Darses, C. Galopin and J. A. Laffitte,
Tetrahedron: Asymmetry, 1994, 5, 675.
15 (a) in Handbook of Organopalladium Chemistry for Organic
Synthesis, ed. E. Negishi, John Wiley & Sons, New York, 2002;
(b) R. H. Crabtree, The Organometallic Chemistry of the Transition
Metals, John Wiley & Sons, Hoboken, NJ, 4th edn, 2005.
16 For an example of asymmetric hydrogantion of vinyl chloride see:
I. G. Smilovic, E. Casas-Arce, S. J. Roseblade, U. Nettekoven,
A. Zanotti-Gerosa, M. Kovacevic and Z. Casar, Angew. Chem.,
Int. Ed., 2012, 51, 1014.
Scheme 2 Asymmetric hydrogenation of the bromo analogues and
their debromination.
The same trend was found when Cl was the substituent
(entries 3–5 vs. 6–8, Table 2). When 1l was hydrogenated
under these reaction conditions, only trace of debrominated
product 2c was detected by HPLC. (4Z,6E)-Methyl 4-chloro-
3-oxo-7-phenylhepta-4,6-dienoate (1n), a more functionalized
olefinic ketone, was tolerant under these conditions as well,
both CQC bonds remained untouched (entry 12, Table 2).
On the basis of the success in asymmetric hydrogenation of 1l, an
aryl bromide, we wondered whether a vinyl bromide moiety would
be tolerant under this specified condition. Bromo analogues 3a–c
were synthesized and submitted to hydrogenation. Gratifyingly,
they were fully transformed to bromo-substituted allyl alcohols
4a–c in high yields and enantioselectivities (Scheme 2), ee’s were
even higher than their chloro analogues. Phenyl ring substituted
substrates 3b and 3c need longer reaction times to achieve full
conversion. No debromination occurred, only trace of fully
saturated byproduct was detected by 1H NMR. Compared with
vinyl chloride, the remaining vinyl bromide ending could be
more easily converted to other structures by transition metal-
catalyzed reactions. For example, the C–Br bond could be
reduced to a C–H bond by HCO2Na in high yield without
racemisation under the catalysis of PdCl2(dppf) (Scheme 2).
In conclusion, we have successfully achieved a highly chemo-
selective and enantioselective asymmetric hydrogenation of a
series of g-halo-g,d-unsaturated b-keto esters at the carbonyl
group by a Ru/diphosphine catalytic system under neutral
conditions. Both the conjugated CQC double bonds and
adjacent vinyl halogens remained untouched even at the risk
of over-reduction and dehalogenation.17 This method showed
high enantioselectivity (up to 97% ee) with a wide substrate
scope. The halogen substituted chiral allyl alcohol may undergo
further derivation to access more complex building blocks,
especially in the case of the vinyl bromide.
We thank the National Natural Science Foundation of
China for financial support and Johnson Matthey (Shanghai)
Chemicals Limited for the generous loan of precious metal
catalysts.
Notes and references
1 (a) The Claisen Rearrangement: Methods and Applications,
ed. M. Hiersemann and U. Nubbemeyer, Wiley-VCH, Weinheim,
2007; (b) P. Wipf, in Comprehensive Organic Synthesis, ed. B. M. Trost,
I. Fleming and L. A. Paquette, Pergamon, Kidlington, Oxford, 1991,
vol. 5, pp. 827–873; (c) S. Rhoads and N. Raulins, Org. React., 1975,
22, 1.
2 For an example see: G. Stork and A. R. Schoofs, J. Am. Chem.
Soc., 1979, 101, 5081.
3 (a) For an example see: J. A. MacKay and E. Vedejs, J. Org.
Chem., 2004, 69, 6934. For recent reviews of kinetic resolution
see(b) H. Pellissier, Adv. Synth. Catal., 2011, 353, 1613;
(c) E. Vedejs and M. Jure, Angew. Chem., Int. Ed., 2005, 44, 3974.
17 The introduction of halogen was crucial for the selectivity of the
CQO/CQC bond. When (E)-methyl 3-oxo-5-phenylpent-4-enoate
was hydrogenated under standard conditions for 1 h, ca. 15% fully
saturated byproduct was detected by 1H NMR at ca. 85%
conversion.
c
5354 Chem. Commun., 2012, 48, 5352–5354
This journal is The Royal Society of Chemistry 2012