4. Leung, D.; Wurst, J. M.; Liu, T.; Martinez, R. M.; Datta-
Mannan, A.; Feng, Y. Q., Antibody Conjugates-Recent Advances
and Future Innovations. Antibodies 2020, 9 (1).
5. Birrer, M. J.; Moore, K. N.; Betella, I.; Bates, R. C.,
Antibody-Drug Conjugate-Based Therapeutics: State of the
Science. Jnci-J Natl Cancer I 2019, 111 (6), 538-549.
6. Saito, F.; Noda, H.; Bode, J. W., Critical evaluation and rate
constants of chemoselective ligation reactions for stoichiometric
conjugations in water. ACS Chem Biol 2015, 10 (4), 1026-33.
7. Sharpless, N. E.; Flavin, M., The reactions of amines and
amino acids with maleimides. Structure of the reaction products
deduced from infrared and nuclear magnetic resonance
spectroscopy. Biochemistry 1966, 5 (9), 2963-71.
8. Ponte, J. F.; Sun, X. X.; Yoder, N. C.; Fishkin, N.; Laleau, R.;
Coccia, J.; Lanieri, L.; Bogalhas, M.; Wang, L. T.; Wilhelm, S.;
Widdison, W.; Pinkas, J.; Keating, T. A.; Chari, R.; Erickson, H.
K.; Lambert, J. M., Understanding How the Stability of the
Thiol-Maleimide Linkage Impacts the Pharmacokinetics of
Lysine-Linked Antibody-Maytansinoid Conjugates. Bioconjugate
Chem 2016, 27 (7), 1588-1598.
9. Lyon, R. P.; Setter, J. R.; Bovee, T. D.; Doronina, S. O.;
Hunter, J. H.; Anderson, M. E.; Balasubramanian, C. L.; Duniho,
S. M.; Leiske, C. I.; Li, F.; Senter, P. D., Self-hydrolyzing
maleimides improve the stability and pharmacological properties
of antibody-drug conjugates. Nat Biotechnol 2014, 32 (10), 1059-
+.
10. Schumacher, F. F.; Nunes, J. P. M.; Maruani, A.; Chudasama,
V.; Smith, M. E. B.; Chester, K. A.; Baker, J. R.; Caddick, S.,
Next generation maleimides enable the controlled assembly of
antibody-drug conjugates via native disulfide bond bridging. Org
Biomol Chem 2014, 12 (37), 7261-7269.
11. Badescu, G.; Bryant, P.; Bird, M.; Henseleit, K.; Swierkosz,
J.; Parekh, V.; Tommasi, R.; Pawlisz, E.; Jurlewicz, K.; Farys,
M.; Camper, N.; Sheng, X. B.; Fisher, M.; Grygorash, R.; Kyle,
A.; Abhilash, A.; Frigerio, M.; Edwards, J.; Godwin, A.,
Bridging Disulfides for Stable and Defined Antibody Drug
Conjugates. Bioconjugate Chem 2014, 25 (6), 1124-1136.
12. Drake, P. M.; Albers, A. E.; Baker, J.; Banas, S.; Barfield, R.
M.; Bhat, A. S.; de Hart, G. W.; Garofalo, A. W.; Holder, P.;
Jones, L. C.; Kudirka, R.; McFarland, J.; Zmolek, W.; Rabuka,
D., Aldehyde Tag Coupled with HIPS Chemistry Enables the
Production of ADCs Conjugated Site-Specifically to Different
Antibody Regions with Distinct in Vivo Efficacy and PK
Outcomes. Bioconjugate Chem 2014, 25 (7), 1331-1341.
13. Kularatne, S. A.; Deshmukh, V.; Ma, J.; Tardif, V.; Lim, R.
K. V.; Pugh, H. M.; Sun, Y.; Manibusan, A.; Sellers, A. J.;
Barnett, R. S.; Srinagesh, S.; Forsyth, J. S.; Hassenpflug, W.;
Tian, F.; Javahishvili, T.; Felding-Habermann, B.; Lawson, B.
R.; Kazane, S. A.; Schultz, P. G., A CXCR4-Targeted Site-
Specific Antibody-Drug Conjugate. Angew Chem Int Edit 2014,
53 (44), 11863-11867.
18. Yamada, K.; Ito, Y., Recent Chemical Approaches for Site-
Specific Conjugation of Native Antibodies: Technologies toward
Next-Generation Antibody-Drug Conjugates. Chembiochem
2019, 20 (21), 2729-2737.
19. Zimmerman, E. S.; Heibeck, T. H.; Gill, A.; Li, X. F.;
Murray, C. J.; Madlansacay, M. R.; Tran, C.; Uter, N. T.; Yin,
G.; Rivers, P. J.; Yam, A. Y.; Wang, W. D.; Steiner, A. R.;
Bajad, S. U.; Penta, K.; Yang, W. J.; Hallam, T. J.; Thanos, C.
D.; Sato, A. K., Production of Site-Specific Antibody-Drug
Conjugates Using Optimized Non-Natural Amino Acids in a
Cell-Free Expression System. Bioconjugate Chem 2014, 25 (2),
351-361.
20. VanBrunt, M. P.; Shanebeck, K.; Caldwell, Z.; Johnson, J.;
Thompson, P.; Martin, T.; Dong, H. F.; Li, G. R.; Xu, H. Y.;
D'Hooge, F.; Masterson, L.; Bariola, P.; Tiberghien, A.; Ezeadi,
E.; Williams, D. G.; Hartley, J. A.; Howard, P. W.; Grabstein, K.
H.; Bowen, M. K.; Marelli, M., Genetically Encoded Azide
Containing Amino Acid in Mammalian Cells Enables Site-
Specific Antibody-Drug Conjugates Using Click Cycloaddition
Chemistry. Bioconjugate Chem 2015, 26 (11), 2249-2260.
21. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G., Analysis and
Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition
for Bioconjugation. Angew Chem Int Edit 2009, 48 (52), 9879-
9883.
22. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless,
K. B.; Finn, M. G., Bioconjugation by copper(I)-catalyzed azide-
alkyne [3+2] cycloaddition. J Am Chem Soc 2003, 125 (11),
3192-3193.
23. Besanceney-Webler, C.; Jiang, H.; Zheng, T. Q.; Feng, L.;
del Amo, D. S.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu,
Y.; Wu, P., Increasing the Efficacy of Bioorthogonal Click
Reactions for Bioconjugation: A Comparative Study. Angew
Chem Int Edit 2011, 50 (35), 8051-8056.
24. del Amo, D. S.; Wang, W.; Jiang, H.; Besanceney, C.; Yan,
A. C.; Levy, M.; Liu, Y.; Marlow, F. L.; Wu, P., Biocompatible
Copper(I) Catalysts for in Vivo Imaging of Glycans. J Am Chem
Soc 2010, 132 (47), 16893-16899.
25. Rodionov, V. O.; Fokin, V. V.; Finn, M. G., Mechanism of
the ligand-free CuI-catalyzed azide-alkyne cycloaddition
reaction. Angew Chem Int Ed Engl 2005, 44 (15), 2210-5.
26. Penoni, A.; Palmisano, G.; Zhao, Y. L.; Houk, K. N.;
Volkman, J.; Nicholas, K. M., On the Mechanism of
Nitrosoarene-Alkyne Cycloaddition. J Am Chem Soc 2009, 131
(2), 653-661.
27. Uttamapinant, C.; Tangpeerachaikul, A.; Grecian, S.; Clarke,
S.; Singh, U.; Slade, P.; Gee, K. R.; Ting, A. Y., Fast, Cell-
Compatible Click Chemistry with Copper-Chelating Azides for
Biomolecular Labeling. Angew Chem Int Edit 2012, 51 (24),
5852-5856.
28. Nguyen, D. P.; Lusic, H.; Neumann, H.; Kapadnis, P. B.;
Deiters, A.; Chin, J. W., Genetic Encoding and Labeling of
Aliphatic Azides and Alkynes in Recombinant Proteins via a
Pyrrolysyl-tRNA Synthetase/tRNA(CUA) Pair and Click
Chemistry. J Am Chem Soc 2009, 131 (25), 8720-+
29. Franklin, M. C.; Carey, K. D.; Vajdos, F. F.; Leahy, D. J.;
de Vos, A. M.; Sliwkowski, M. X., Insights into ErbB signaling
from the structure of the ErbB2-pertuzumab complex. Cancer
Cell 2004, 5 (4), 317-328.
14. Maruani, A.; Smith, M. E. B.; Miranda, E.; Chester, K. A.;
Chudasama, V.; Caddick, S., A plug-and-play approach to
antibody-based therapeutics via a chemoselective dual click
strategy. Nat Commun 2015, 6.
15. Ohata, J.; Ball, Z. T., A Hexa-rhodium Metallopeptide
Catalyst for Site-Specific Functionalization of Natural
Antibodies. J Am Chem Soc 2017, 139 (36), 12617-12622.
16. Oller-Salvia, B.; Kym, G.; Chin, J. W., Rapid and Efficient
Generation of Stable Antibody-Drug Conjugates via an Encoded
Cyclopropene and an Inverse-Electron-Demand Diels-Alder
Reaction. Angew Chem Int Edit 2018, 57 (11), 2831-2834.
17. Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute,
B. L.; Buchwald, S. L., Organometallic palladium reagents for
cysteine bioconjugation. Nature 2015, 526 (7575), 687-691.
30. Kang, J. C.; Sun, W.; Khare, P.; Karimi, M.; Wang, X. L.;
Shen, Y.; Ober, R. J.; Ward, E. S., Engineering a HER2-specific
antibody-drug conjugate to increase lysosomal delivery and
therapeutic efficacy. Nat Biotechnol 2019, 37 (5), 523-+.
31. Jiang, X. Y.; Hao, X.; Jing, L. L.; Wu, G. C.; Kang, D. W.;
Liu, X. Y.; Zhan, P., Recent applications of click chemistry in
drug discovery. Expert Opin Drug Dis 2019, 14 (8), 779-789.