3 L. Flohe and W. A. Pryor, Free Radicals in Biology, Academic Press,
New York, 1982.
standard catalyst in our study and its activity was arbitrarily
ascribed as 1.0 (entry 1).
4 (a) H. Sies, Angew. Chem., Int. Ed., 1986, 25, 1058; (b) G. Mugesh and
H. B. Singh, Chem. Soc. Rev., 2000, 29, 347; (c) G. Mugesh and
W. W. Mont, Chem.–Eur. J., 2001, 7, 1365; (d) G. Mugesh, W. W. Mont
and H. Sies, Chem. Rev., 2001, 101, 2125; (e) C. Jacob, G. I. Giles,
N. M. Giles and H. Sies, Angew. Chem., Int. Ed., 2003, 42, 4742;
(f) C. W. Nogueira, G. Zeni and J. B. T. Rocha, Chem. Rev., 2004, 104,
6255; (g) E. E. Alberto, V. Nascimento and A. L. Braga, J. Braz. Chem.
Soc., 2010, 21, 2032; (h) K. P. Bhabak and G. Mugesh, Acc. Chem. Res.,
2010, 43, 1408; (i) E. E. Alberto, L. C. Soares, J. H. Sudati,
A. C. A. Borges, J. B. T. Rocha and A. L. Braga, Eur. J. Org. Chem.,
2009, 4211; ( j) D. J. Press and T. G. Back, Org. Lett., 2011, 13, 4104;
(k) K. Satheeshkumar and G. Mugesh, Chem.–Eur. J., 2011, 17, 4849;
(l) V. Nascimento, E. E. Alberto, W. D. Tondo, D. Dambrowski,
M. R. Detty, F. Nome and A. L. Braga, J. Am. Chem. Soc., 2012, 134,
138.
5 (a) G. P. Chen and D. M. Ziegler, Arch. Biochem. Biophys., 1994, 312,
566; (b) T. P. M. Akerboom, H. Sies and D. M. Ziegler, Arch. Biochem.
Biophys., 1995, 316, 220; (c) M. Iwaoka and S. Tomoda, Chem. Lett.,
2000, 1400; (d) M. Iwaoka, T. Takahashi and S. Tomoda, Heteroat.
Chem., 2001, 12, 293; (e) C. Jacob, G. I. Giles, N. M. Giles and H. Sies,
Angew. Chem., Int. Ed., 2003, 42, 4742; (f) V. Silva, M. M. Woznichak,
K. L. Burns, K. B. Grant and S. W. May, J. Am. Chem. Soc., 2004, 126,
2409; (g) N. Metanis, E. Keinan and P. E. Dawson, J. Am. Chem. Soc.,
2006, 128, 16684; (h) M. Iwaoka, F. Kumakura, M. Yoneda, T. Nakahara,
K. Henmi, H. Aonuma, H. Nakatani and S. Tomoda, J. Biochem., 2008,
144, 121; (i) K. B. Sharpless, K. M. Gordon, R. F. Lauer, D. W. Patrick,
S. P. Singer and M. W. Young, Chem. Scr., 1975, 8A, 9; ( j) H. J. Reich,
Acc. Chem. Res., 1979, 12, 22; (k) M. R. Detty, P. B. Merkel and
S. K. Powers, J. Am. Chem. Soc., 1988, 110, 5920; (l) M. R. Detty,
Organometallics, 1991, 10, 702.
6 For reviews, see: (a) T. Wirth, Tetrahedron, 1999, 55, 1; (b) T. Wirth,
Angew. Chem., Int. Ed., 2000, 39, 3741; (c) A. L. Braga, D. S. Lüdtke,
F. Vargas and R. C. Braga, Synlett, 2006, 1453; (d) A. L. Braga,
D. S. Lüdtke and F. Vargas, Curr. Org. Chem., 2006, 10, 1921;
(e) A. L. Braga, M. W. Paixão and M. Godoi, Dalton Trans., 2011, 40,
11347.
7 (a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley &
Sons, New York, 1994; (b) B. Goldfuss, Synthesis, 2005, 14, 2271.
8 For addition of boronic acids see: (a) S. D. Lüdtke, A. D. Wouters,
G. H. G. Trossini and H. A. Stefani, Eur. J. Org. Chem., 2010, 2351;
(b) A. L. Braga, M. W. Paixão, B. Westermann, P. H. Schneider and
A. W. Ludger, J. Org. Chem., 2007, 73, 2879; (c) W. Ping-Yu,
W. Hsyueh-Liang and U. Biing-Jiun, J. Org. Chem., 2005, 71, 833;
(d) C. Bolm, N. Hermanns, J. P. Hildebrand and K. Muñiz, Angew.
Chem., Int. Ed., 2000, 39, 3465; (e) C. Bolm and J. Rudolph, J. Am.
Chem. Soc., 2002, 124, 14850; (f) C. Bolm, N. Hermanns,
M. Kesselgruber, J. P. Hildebrando and G. Raabe, Angew. Chem., Int.
Ed., 2001, 40, 1488.
Not surprisingly, selenide 3a was the poorer catalyst in this set
of experiments (entry 3). The lower catalytic activity of this com-
pound, T50 of 244 min, is the result of the sluggish oxidation of
the selenide with H2O2. Conversely, a different scenario is
observed for catalysts 2 and 3c. Ephedrine derivative 3c with a
labile selenoester functionality allows the formation in situ of the
correspondent selenolate, which impacts substantially its activity.
Compared to the standard PhSeSePh, catalyst 3c showed cataly-
tic performance aproximately 4-fold higher. Moreover, disele-
nide 2 promoted the reduction of the concentration of PhSH to a
half in just 16.3 min (entry 2). The increased activity of this
compound, 11.5-fold higher than PhSeSePh, is attributed to the
beneficial interactions between selenium and the nitrogen moiety
in the course of the reaction.20
In summary, we have described in this paper the preparation
of new chiral selenium ligands derived from (−)-ephedrine in
only one step in good yields. The ephedrine-based diselenide
was revealed to be an important example of a synthesized pro-
miscuous catalyst, with activity as GPx mimics and the enantio-
selective addition of organozinc to aldehydes, acting as a redox
element or a metal ligand.
In a comparison study, diselenide 2 proved to be a much
better catalyst than the parent aminoalcohol ephedrine 1 for
enantioselective carbon–carbon bond formations. Our designed
catalysts were found to be convenient for use in the enantioselec-
tive aryl transfer addition of boronic acids to aldehydes, as well
as the addition of diethylzinc to aldehydes, allowing the pre-
paration of the desired chiral alcohols in good to excellent yields
and high enantiomeric excess.
The ephedrine-based diselenide was also efficiently used as a
GPx mimic, catalyzing the reduction of H2O2 to water at the
expense of thiophenol using as little as 1 mol%. This diselenide
significantly accelerated the reaction exhibiting a T50 of
16.33 min, while only a marginal accelerating effect was
observed for the already known GPx mimic, PhSeSePh, which
showed a T50 of 187.28 min. This opens a new perspective of
using this kind of compound in medicine, since it could act as a
redox element or a metal ligand with potential application as
mimics or inhibitors of enzymes.
9 For addition of diethylzinc see: (a) S. M. Cerero, B. L. Maroto and
T. C. Engel, Eur. J. Org. Chem., 2010, 1717; (b) A. R. Abreu,
M. M. Pereira and J. C. Bayón, Tetrahedron Lett., 2010, 66, 743;
(c) P. Salehi, M. Dabiri, G. Kozehgary and M. Baghbanzadeh, Tetra-
hedron: Asymmetry, 2009, 20, 2609; (d) J. A. Groeper, S. R. Hitchcock,
J. M. Standard and S. Banerjee, Tetrahedron: Asymmetry, 2009, 20, 2154;
(e) S. Lésniak, M. Rachwalski, E. Sznajder and P. Kielbasínski, Tetra-
hedron: Asymmetry, 2009, 20, 2311.
Acknowledgements
We are grateful to INCT-Catálise, CNPq, CAPES and FAPESC
10 (a) N. Sperber, D. Paga, E. Schwenk and M. Sherlock, J. Am. Chem.
Soc., 1949, 71, 887; (b) A. F. Harms and W. T. J. Nauta, Med. Pharm.
Chem., 1960, 2, 57; (c) K. Meguro, M. Aizawa, T. Sohda, Y. Kawamatsu
and A. Nagaoka, Chem. Pharm. Bull., 1985, 33, 3787; (d) F. Toda,
K. Tanaka and K. Koshiro, Tetrahedron: Asymmetry, 1991, 2, 873;
(e) S. Stanev, R. Rakovska, N. Berova and G. Snatzke, Tetrahedron:
Asymmetry, 1995, 6, 183; (f) M. Bota, V. Summa, F. Corelli, G. D. Pietro
and P. Lombardi, Tetrahedron: Asymmetry, 1996, 7, 1263; (g) E. J. Corey
and C. J. Heldal, Tetrahedron Lett., 1996, 37, 4837.
11 (a) A. L. Braga, H. R. Appelt, P. H. Schneider, C. C. Silveira and
L. A. Wessjohann, Tetrahedron: Asymmetry, 1999, 10, 1733;
(b) A. L. Braga, O. E. D. Rodrigues, M. W. Paixão, H. R. Appelt, C.
C. Silveira and D. P. Bottega, Synthesis, 2002, 2338; (c) T. Wirth and
C. Santi, Tetrahedron: Asymmetry, 1999, 10, 1019; (d) T. Wirth, Tetra-
hedron Lett., 1995, 36, 7849.
for financial support.
References
1 (a) C. Paulmier, Selenium Reagents and Intermediates in Organic Syn-
thesis, Pergamon Press, Oxford, 1986; (b) T. G. Back, Organoselenium
Chemistry. A Practical Approach, Oxford University Press, Oxford,
1999; (c) E. E. Alberto and A. L. Braga, Selenium and Tellurium Chem-
istry
– From Small Molecules to Biomolecules and Materials,
ed. W. J. Derek, L. Risto, Springer-Verlag, Berlin, 2011.
2 (a) H. Sies, Oxidative Stress: Introductory Remarks, Academic Press,
London, 1985; (b) H. Sies, Angew. Chem., Int. Ed., 1986, 25, 1058;
(c) T. C. Stadtman, J. Biol. Chem., 1991, 266, 16257; (d) F. Ursini and
R. Paoletti, Oxidative Processes and Antioxidants, Raven Press,
New York, 1994.
12 (a) C. M. Bolm, A. Kesselgruber, N. Grenz Hermmanns and
J. P. Hildebrand, New J. Chem., 2001, 25, 13; (b) R. S. Schwab,
6598 | Org. Biomol. Chem., 2012, 10, 6595–6599
This journal is © The Royal Society of Chemistry 2012