based DSC than the PyPMI-2 based device could be attributed
to the insulating nature of pyridine-4-carboxylic acid that binds
ZnP-1 on TiO2 in comparison with direct chemisorption of
PyPMI-2 on the electrode (via Ti–O bond formation) that
facilitates electron injection.
In conclusion, we have self-assembled ZnP, PMI, and PDI
dyes via metal–ligand coordination and immobilized them on
TiO2 surfaces to construct multichromophoric DSCs. Broad
light-absorbing ZnP-1ꢀ ꢀ ꢀPyPMI-2 dyad-based DSCs display
higher VOC, JSC, and efficiency (Z = 1.1 ꢂ 0.06%) under
1.5 AM conditions than those made of individual dyes. To
improve the efficiency of DSCs, we have undertaken a supra-
molecular assembly of multichromophoric DSCs using red
and NIR absorbing dyes.
Fig. 2 (a) UV/Vis spectra of TiO2–FTO surfaces functionalized with
the ZnP-1ꢀ ꢀ ꢀPyPMI-2 dyad (green), PyPMI-2 (red), and ZnP-1 (violet).
(b) I–V characteristics of DSCs composed of the ZnP-1ꢀ ꢀ ꢀPyPMI-2
dyad (green), PyPMI-2 (red), and ZnP-1 (violet) showing photocurrent
generation (JSC and VOC) under 1.5 AM conditions (dotted lines) and
negligible dark currents (solid lines).
We acknowledge Drs Richard Schaller, Seth Darling, and
Daniel Rosenmann (Argonne National Laboratory (ANL))
for providing Pt/ITO counter electrodes. Use of the Center for
Nanoscale Materials at ANL was supported by the U. S.
Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
Table 2 Performance of DSCs based on the ZnP-1ꢀ ꢀ ꢀPyPDICy-2
dyad ZnP-1, and PyPMI-2 dyes under standard illumination
(100 mW cmꢁ2
)
Dye composition
J
SC/mA cmꢁ2 VOC/mV FF (%) Z (%)
ZnP-1ꢀ ꢀ ꢀPyPMI-2 5.51
410
390
340
49
57
60
1.10 ꢂ 0.06
0.72 ꢂ 0.04
0.09 ꢂ 0.02
Notes and references
PyPMI-2
ZnP-1
3.21
0.47
1 (a) B. O’Regan and M. Gratzel, Nature, 1991, 353, 737;
¨
(b) B. O’Regan and J. R. Durrant, Acc. Chem. Res., 2009,
42, 1799; (c) A. Hegfeldt, G. Boschloo, L. Sun, L. Kloo and
H. Petersson, Chem. Soc. Rev., 2010, 110, 6595.
2 (a) A. J. Mozer, P. Wagner, D. L. Officer, G. G. Wallace,
W. M. Campbell, M. Miyashita, K. Sunahara and S. Mori, Chem.
Commun., 2008, 4741; (b) C. Huang, S. Barlow and S. Marder,
J. Org. Chem., 2011, 76, 2386; (c) B. E. Hardin, H. J. Snaith and
M. D. McGhee, Nat. Photonics, 2012, 6, 162.
much higher JSC (5.51 mA cmꢁ2) and VOC (410 mV) than
those displayed by ZnP-1 and PyPMI-2 based DSCs (Fig. 2b
and Table 2). Consequently, the energy conversion efficiency
of the dichromophoric ZnP-1ꢀ ꢀ ꢀPyPMI-2 dyad-based device
(Z = 1.10 ꢂ 0.06%) is 12-times greater than that of the ZnP-1-
based DSC and 1.5-times larger than that of the PyPMI-2-
based device. The greater efficiency of dichromophoric DSC
can be attributed to the better light-harvesting ability of the
ZnP-1ꢀ ꢀ ꢀPyPMI-2 dyad over broader wavelength regions.
Much greater VOC, JSC, and Z were observed for all DSCs
3 (a) J. Cid, J. Yum, S. Jang, M. K. Nazeeruddin, E. Palomares,
J. Ko, M. Gratzel and T. Torres, Angew. Chem., Int. Ed., 2007,
¨
46, 8358; (b) D. Kuang, P. Walter, F. Nuesch, S. Kim,
S. M. Nazeeruddin, M. K. Nazeeruddin and M. Gratzel, Lang-
muir, 2007, 23, 10906; (c) M. Kimura, H. Nomoto, N. Masaki and
S. Mori, Angew. Chem., Int. Ed., 2012, 51, 4371.
4 (a) B. Rybtchinski, L. E. Sinks and M. R. Wasielewski, J. Am. Chem.
Soc., 2004, 126, 12268; (b) N. K. Subbaiyan, J. P. Hill, K. Ariga,
S. Fukuzumi and F. D’Souza, Chem. Commun., 2011, 47, 6003.
5 J. N. Clifford, E. M-Ferrero, A. Vitesisi and E. Palomares, Chem.
Soc. Rev., 2011, 40, 1635.
¨
with a PC-based Iꢁ/I3 redox mediator (Fig. 2 and Table 2)
ꢁ
than with a MeCN based electrolyte (Fig. S4 and Table S1,
ESIw). Greater efficiencies of the PC-based DSCs than that of
the MeCN-based devices can be attributed to the higher
dielectric constant of PC (64) than of MeCN (37.5), which
facilitates better charge separation in the former devices.12
It is conceivable that in the ZnP-1ꢀ ꢀ ꢀPyPMI-2 dyad-based
DSC, excitation of either ZnP-1 or PyPMI-2 to the singlet
excited states could trigger photoinduced electron transfer
(PET), which would lead to electron and hole movement
in the opposite directions.7b For instance, PET from either
6 (a) S. Prathapan, S. I. Yang, J. Seth, M. A. Miller, D. F. Bocian,
D. Holten and J. S. Lindsey, J. Phys. Chem. B, 2001, 105, 8237;
(b) F. D’Souza, P. M. Smith, M. E. Zandler, A. L. McCarty,
M. Ito, Y. Araki and O. Ito, J. Am. Chem. Soc., 2004, 126, 7898;
(c) P. A. Liddell, G. Kodis, J. Andrasson, L. de la Garza,
S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore
and D. Gust, J. Am. Chem. Soc., 2004, 126, 4803; (d) S. Saha,
L. E. Johansson, A. H. Flood, H.-R. Tseng, J. I. Zink and
J. F. Stoddart, Chem.–Eur. J., 2005, 11, 6846; (e) A. Gouloumis,
A. Escosura, P. Vazquez, T. Torres, A. Kahnt, D. M. Guldi,
H. Neugebauer, C. Winder, M. Drees and N. S. Sariciftci, Org.
Lett., 2006, 8, 5187; (f) T. Torres, A. Gouloumis, D. Sanchez,
J. Jayawickramarajah, W. Seitz, D. M. Guldi and J. L. Sessler,
Chem. Commun., 2007, 292; (g) H. Hayashi, I. V. Lightcap,
M. Tsujimoto, T. Umeyama, P. V. Kamat and H. Imahori,
J. Am. Chem. Soc., 2011, 133, 7684.
7 (a) M. T. Brumbach, A. K. Boal and D. R. Wheeler, Langmuir,
2009, 25, 10685; (b) N. K. Subbaiyan, C. A. Wijesinghe and
F. D’Souza, J. Am. Chem. Soc., 2009, 131, 14646.
8 F. J. Cespedes-Guirao, K. Ohkubo, S. Fukuzumi, F. Fernandez-
Lazaro and A. Sastre-Santos, Chem.–Asian J., 2011, 6, 3110.
9 Y. Shibano, T. Umeyama, Y. Matano and H. Imahori, Org. Lett.,
2007, 9, 1971.
1
the *ZnP-1 excited state through PyPMI-2 to TiO2 or from
ZnP-1 via the 1*PyPMI-2 excited state to TiO2 would generate
+
ZnP-1ꢄ radical cations and inject electrons to n-type semi-
conducting TiO2 via PyPMI-2ꢄꢁ radical anions. Characterization
of these photophysical processes will be conducted through
transient absorption spectroscopy measurements. Nevertheless, the
greater efficiency of the dyad-based DSC over the individual dyes
suggests that both pathways perhaps contribute to light-to-
electrical energy conversion in the dyad system, as these
chromophores absorb light in entirely different regions (Fig. 2b).
In addition, vectorial electron transfer in the ZnP-1ꢀꢀꢀPyPMI-2–
TiO2 device leads to better charge separation than one-step
PET from 1*ZnP-1 or 1*PyPMI-2 to the TiO2 surface in
monochromophoric devices. Lower VOC and JSC of the ZnP-1
10 B. Gao, Y. Li, J. Su and H. Tian, Supramol. Chem., 2007, 19, 207.
11 Analytical Methods in Supramolecular Chemistry, ed. C. A. Schalley,
Wiley-VCH, Weinheim, 2007.
12 T. M. Clarke and J. R. Durrant, Chem. Rev., 2010, 110, 6736.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 8775–8777 8777