182
D. Karlsson et al. / European Journal of Pharmaceutical Sciences 45 (2012) 169–183
Elsinghorst, P.W., Tanarro, C.M., Gütschow, M., 2006. Novel heterobivalent tacrine
derivatives as cholinesterase inhibitors with notable selectivity toward
butyrylcholinesterase. J. Med. Chem. 49, 7540–7544.
Farlow, M., Miller, M., Pejovic, V., 2008. Treatment options in Alzheimer’s disease:
maximizing benefit, managing expectations. Dement. Geriatr. Cogn. Disord. 25,
408–422.
Borgs minnesfond to the research project. In addition, Academy of
Finland (BIOARMI project, decision 128870) is sincerely acknowl-
edged as well as the support received from the Drug Discovery
and Chemical Biology (DDCB) network of Biocenter Finland (P.V.).
Gazit, E., 2005. Mechanisms of amyloid fibril self-assembly and inhibition. Model
short peptides as a key research tool. FEBS J. 272, 5971–5978.
Giacobini, E., 2004. Cholinesterase inhibitors: new roles and therapeutic
alternatives. Pharmacol. Res. 50, 433–440.
Appendix A. Supplementary data
Greig, N., Utsuki, T., Ingram, D., Wang, Y., Pepeu, G., Scali, C., Yu, Q., Mamczarz, J.,
Holloway, H., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A.,
Lahiri, D., 2005. Selective butyrylcholinesterase inhibition elevates brain
acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide
in rodent. Proc. Natl. Acad. Sci. USA 102, 17213–17218.
Supplementary data associated with this article can be found, in
Greig, N., Yu, Q., Brossi, A., Martin, E., Lahiri, D., Darvesh, S., 2008.
References
Butyrylcholinesterase, the Cinderella cholinesterase, as
a drug target for
Alzheimer’s disease and related dementias. In: Martínez Gil, A. (Ed.),
Medicinal Chemistry of Alzheimer’s Disease. Transworld Research Network,
Kerala, pp. 79–109.
Adsersen, A., Kjølbye, A., Dall, O., Jäger, A.K., 2007. Acetylcholinesterase and
butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. &
Kort. J. Ethnopharmacol. 113, 179–182.
Alptüzün, V., Prinz, M., Hörr, V., Scheiber, J., Radacki, K., Fallarero, A., Vuorela, P.,
Engels, B., Braunschweig, H., Erciyas, E., Holzgrabe, U., 2010. Interaction of
Hartmann, J., Kiewert, C., Duysen, E., Lockridge, O., Greig, N., Klein, J., 2007. Excessive
hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are
moderated by butyrylcholinesterase activity. J. Neurochem. 100, 1421–1429.
Holmes, C., Ballard, C., Lehmann, D., David Smith, A., Beaumont, H., Day, I.N.,
Nadeem Khan, M., Lovestone, S., McCulley, M., Morris, C.M., Munoz, D.G.,
O’Brien, K., Russ, C., Del Ser, T., Warden, D., 2005. Rate of progression of
cognitive decline in Alzheimer’s disease: effect of butyrylcholinesterase K gene
variation. J. Neurol. Neurosurg. Psychiatry 76, 640–643.
Iversen, P., Eastwood, B., Sittampalam, G., Cox, K., 2006. A comparison of assay
performance measures in screening assays: signal window, Z’ factor, and assay
variability ratio. J. Biomol. Screen 11, 247–252.
Järvinen, P., Vuorela, P., Hatakka, A., Fallarero, A., 2011. Potency determinations of
acetylcholinesterase inhibitors using Ellman’s reaction-based assay in
screening: Effect of assay variants. Anal. Biochem. 408, 166–168.
Kawasaki, I., Yamashita, M., Ohta, S., 1996. Total synthesis of nortopsentins A–D,
marine alkaloids. Chem. Pharm. Bull. 44, 1831–1839.
Knapp, S., Albaneze, J., Schugar, H.J., 1993. Allylation of imidazoles. The beneficial
effect of imidazole ligands on (-allyl)nickel coupling. J. Org. Chem. 58, 997–998.
Kovárová, M., Komers, K., Stepánková, S., Cegan, A., 2010. Inhibition of
acetylcholinesterase by 14 achiral and five chiral imidazole derivates.
Bioresour. Technol. 101, 6281–6283.
LaFerla, F.M., Green, K.N., Oddo, S., 2007. Intracellular amyloid-beta in Alzheimer’s
disease. Nat. Rev. Neurosci. 8, 499–509.
Langhammer, I., Erker, T., 2005. Synthesis of 2, 4-diarylimidazoles through Suzuki
cross-coupling reactions of imidazole halides with arylboronic acids.
Heterocycles 65, 1975–1984.
Larsson, J., Gottfries, J., Muresan, S., Backlund, A., 2007. ChemGPS-NP: tuned for
navigation in biologically relevant chemical space. J. Nat. Prod. 70, 789–794.
LeVine, H.r., 1993. Thioflavine T interaction with synthetic Alzheimer’s disease
beta-amyloid peptides: detection of amyloid aggregation in solution. Protein
Sci. 2, 404–410.
Li, B., Chiu, C.K.F., Hank, R.F., Murry, J., Roth, J., Tobiassen, H., 2005. Preparation of 2,
4-disubstituted imidazoles: 4-(4-methoxyphenyl)-2-phenyl-1H-imidazole. Org.
Synth. 81, 105.
Lipinski, C., Lombardo, F., Dominy, B., Feeney, P., 1997. Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Adv. Drug. Deliv. Rev. 23, 3–25.
Liu, R., Yuan, B., Emadi, S., Zameer, A., Schulz, P., McAllister, C., Lyubchenko, Y., Goud,
G., Sierks, M.R., 2004. Single chain variable fragments against beta-amyloid
(Abeta) can inhibit Abeta aggregation and prevent abeta-induced neurotoxicity.
Biochemistry 43, 6959–6967.
Lorenzo, A., Yankner, B.A., 1994. Beta-amyloid neurotoxicity requires fibril
formation and is inhibited by congo red. Proc. Natl. Acad. Sci. USA 91, 12243–
12247.
Mellon, P.L., Windle, J.J., Goldsmith, P.C., Padula, C.A., Roberts, J.L., Weiner, R.I., 1990.
Immortalization of hypothalamic GnRH neurons by genetically targeted
tumorigenesis. Neuron 5, 1–10.
Mendel, B., Rudney, H., 1943. Studies on cholinesterase: 1. Cholinesterase and
pseudo-cholinesterase. Biochem. J. 37, 59–63.
Mesulam, M., Geula, C., Morán, M., 1987. Anatomy of cholinesterase inhibition in
Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on
plaques and tangles. Ann. Neurol. 22, 683–691.
Mesulam, M., Guillozet, A., Shaw, P., Levey, A., Duysen, E., Lockridge, O., 2002.
Acetylcholinesterase knockouts establish central cholinergic pathways and can
use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110, 627–
639.
(benzylidene-hydrazono)-1,
4-dihydropyridines
with
beta-amyloid,
acetylcholine, and butyrylcholine esterases. Bioorg. Med. Chem. 18, 2049–2059.
Andreani, A., Burnelli, S., Granaiola, M., Guardigli, M., Leoni, A., Locatelli, A., Morigi,
R., Rambaldi, M., Rizzoli, M., Varoli, L., Roda, A., 2008. Chemiluminescent high-
throughput microassay applied to imidazo[2, 1-b]thiazole derivatives as
potential acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J.
Med. Chem. 43, 657–661.
Ballatore, C., Lee, V., Trojanowski, J., 2007. Tau-mediated neurodegeneration in
Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672.
Bartolini, M., Bertucci, C., Cavrini, V., Andrisano, V., 2003. Beta-Amyloid aggregation
induced by human acetylcholinesterase: inhibition studies. Biochem.
Pharmacol. 65, 407–416.
Bemis, G., Murcko, M., 1996. The properties of known drugs.
frameworks. J. Med. Chem. 39, 2887–2893.
1 Molecular
Bollini, S., Herbst, J., Gaughan, G., Verdoorn, T., Ditta, J., Dubowchik, G., Vinitsky, A.,
2002. High-throughput fluorescence polarization method for identification of
FKBP12 ligands. J. Biomol. Screen 7, 526–530.
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M., 2007. Forecasting the
global burden of Alzheimer’s disease. Alzheimers Dement. 3, 186–191.
Carolan, C.G., Dillon, G.P., Gaynor, J.M., Reidy, S., Ryder, S.A., Khan, D., Marquez, J.F.,
Gilmer, J.F., 2008. Isosorbide-2-carbamate esters: potent and selective
butyrylcholinesterase inhibitors. J. Med. Chem. 51, 6400–6409.
Carolan, C.G., Dillon, G.P., Khan, D., Ryder, S.A., Gaynor, J.M., Reidy, S., Marquez, J.F.,
Jones, M., Holland, V., Gilmer, J.F., 2010. Isosorbide-2-benzyl carbamate-5-
salicylate,
a
peripheral anionic site binding subnanomolar selective
butyrylcholinesterase inhibitor. J. Med. Chem. 53, 1190–1199.
Cohen, T., Frydman-Marom, A., Rechter, M., Gazit, E., 2006. Inhibition of amyloid
fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry 45,
4727–4735.
Coma, I., Clark, L., Diez, E., Harper, G., Herranz, J., Hofmann, G., Lennon, M.,
Richmond, N., Valmaseda, M., Macarron, R., 2009. Process validation and screen
reproducibility in high-throughput screening. J. Biomol. Screen 14, 66–76.
Copeland, R.A., 2005. Reversible Modes of Inhibitor Interactions with Enzymes.
Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal
Chemists and Pharmacologists. John Wiley & Sons, Inc., Hoboken, New Jersey,
pp. 48–81.
Cui, M.C., Li, Z.J., Tang, R.K., Liu, B.L., 2010. Synthesis and evaluation of novel
benzothiazole derivatives based on the bithiophene structure as potential
radiotracers for beta-amyloid plaques in Alzheimer’s disease. Bioorg. Med.
Chem. 18, 2777–2784.
Darvesh, S., McDonald, R., Darvesh, K., Mataija, D., Conrad, S., Gomez, G., Walsh, R.,
Martin, E., 2007. Selective reversible inhibition of human butyrylcholinesterase
by aryl amide derivatives of phenothiazine. Bioorg. Med. Chem. 15, 6367–6378.
Darvesh, S., Pottie, I.R., Darvesh, K.V., McDonald, R.S., Walsh, R., Conrad, S., Penwell,
A., Mataija, D., Martin, E., 2010. Differential binding of phenothiazine urea
derivatives to wild-type human cholinesterases and butyrylcholinesterase
mutants. Bioorg. Med. Chem. 18, 2232–2244.
De Felice, F.G., Vieira, M.N., Saraiva, L.M., Figueroa-Villar, J.D., Garcia-Abreu, J., Liu,
R., Chang, L., Klein, W.L., Ferreira, S.T., 2004. Targeting the neurotoxic species in
Alzheimer’s disease: inhibitors of Abeta oligomerization. FASEB J. 18, 1366–
1372.
Decker, M., Kraus, B., Heilmann, J., 2008. Design, synthesis and pharmacological
evaluation of hybrid molecules out of quinazolinimines and lipoic acid lead to
highly potent and selective butyrylcholinesterase inhibitors with antioxidant
properties. Bioorg. Med. Chem. 16, 4252–4261.
Diamant, S., Podoly, E., Friedler, A., Ligumsky, H., Livnah, O., Soreq, H., 2006.
Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc. Natl.
Acad. Sci. USA 103, 8628–8633.
Dillon, G.P., Gaynor, J.M., Khan, D., Carolan, C.G., Ryder, S.A., Marquez, J.F., Reidy, S.,
Gilmer, J.F., 2010. Isosorbide-based cholinesterase inhibitors; replacement of 5-
ester groups leading to increased stability. Bioorg. Med. Chem. 18, 1045–1053.
Ellman, G., Courtney, K., Andres, V.J., Feather-Stone, R., 1961. A new and rapid
colorimetric determination of acetylcholinesterase activity. Biochem.
Pharmacol. 7, 88–95.
Musiał, A., Bajda, M., Malawska, B., 2007. Recent developments in cholinesterases
inhibitors for Alzheimer’s disease treatment. Curr. Med. Chem. 14, 2654–2679.
Naruse, S., Nakanami, K., Kiyota, T., 2010. Novel imidazole compounds as surface
treatment agents used in manufacture of printed circuit boards. Jpn. Kokai
Tokkyo, JP 20100838442010.
Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-Camps, J., Nachon, F., 2003. Crystal
structure of human butyrylcholinesterase and of its complexes with substrate
and products. J. Biol. Chem. 278, 41141–41147.
Norinder, U., Haeberlein, M., 2002. Computational approaches to the prediction of
the blood-brain distribution. Adv. Drug Deliv. Rev. 54, 291–313.