Table 3 Photovoltaic performance of P12 and P13 with PCBM
VOC (V) ISC (mA) JSC (mA cmꢀ2) FF (%) PCE (%)
optimizing the device performance in addition to developing
new materials based on BDFs.
Polymer
Support for this work has been provided by Iowa State
University (ISU) and the 3M Foundation. We thank Dr Kamel
Harrata and the ISU mass spectroscopy laboratory and Dr
Arkady Ellern and the ISU X-ray crystallography facility for
analyses. The PVCs were fabricated at ISU Institute for Physical
Research and Technology’s Microelectronics Research Center.
PinBDFID 0.7366 0.208
PoutBDFID 0.6410 0.164
1.66
1.306
48.6
36
0.590
0.301
Polymer films were prepared from solutions in o-DCB, 10 mg mLꢀ1
.
Notes and references
1 (a) A. Facchetti, Chem. Mater., 2010, 23, 733; (b) A. C. Grimsdale,
K. Leok Chan, R. E. Martin, P. G. Jokisz and A. B. Holmes,
Chem. Rev., 2009, 109, 897; (c) Y.-J. Cheng, S.-H. Yang and
C.-S. Hsu, Chem. Rev., 2009, 109, 5868.
2 (a) E. E. Havinga, W. Hoeve and H. Wynberg, Polym. Bull., 1992,
29, 119; (b) E. E. Havinga, W. ten Hoeve and H. Wynberg, Synth.
Met., 1993, 55, 299.
3 (a) J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li and
Y. Yang, Macromolecules, 2008, 41, 6012; (b) P. Sista, M. C. Biewer
and M. C. Stefan, Macromol. Rapid Commun., 2012, 33, 9;
(c) Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and
Fig. 2 Current–voltage characteristics of polymer PVCs (left). Nor-
malized external quantum efficiency vs. wavelength curve of the PVCs
(right).
to ensure air stability, while providing good open-circuit
voltage (Voc).12
L. Yu, Adv. Mater., 2010, 22, E135; (d) A. Najari, S. Beaupre
P. Berrouard, Y. Zou, J.-R. Pouliot, C. Lepage-Perusse and
M. Leclerc, Adv. Funct. Mater., 2011, 21, 718.
4 (a) C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee and J.
M. J. Frechet, J. Am. Chem. Soc., 2010, 132, 15547; (b) P. A. Peart
´
,
´
The performance of both polymers in BHJ-PVCs was
evaluated using PC61BM as the electron acceptor with a device
configuration of indium tin oxide (ITO)/poly(3,4-ethylene dioxy-
thiophene):polystyrene sulfonate (PEDOT:PSS)/polymer:PC61BM
(1 : 4, w/w)/LiF/Al. The active layer processing conditions
were chosen to yield a layer thickness less than 100 nm. In
general (for P3HT systems), thicker layers (B200 nm) are
better, because they absorb more light. However, since new
generation donor–acceptor polymer films do not have a long-
range order like P3HT, thicker layers tend to have increased
recombination due to hole traps, and thus lower efficiencies.13
The fabrication conditions and PVC parameters (fill factor (FF),
short-circuit current density (Jsc) and Voc) are summarized in
Table 3. The current–voltage (I–V) characteristics of our devices
are shown in Fig. 2.
´
and J. D. Tovar, Macromolecules, 2009, 42, 4449; (c) H. Li,
P. Tang, Y. Zhao, S.-X. Liu, Y. Aeschi, L. Deng, J. Braun,
B. Zhao, Y. Liu, S. Tan, W. Meier and S. Decurtins, J. Polym.
Sci., Part A: Polym. Chem., 2012, 50, 2935; (d) J. C. Bijleveld,
B. P. Karsten, S. G. J. Mathijssen, M. M. Wienk, D. M. de Leeuw
and R. A. J. Janssen, J. Mater. Chem., 2011, 21, 1600.
5 R. S. Hosmane and J. F. Liebman, Tetrahedron Lett., 1992,
33, 2303.
6 (a) Z. Liang, S. Ma, J. Yu and R. Xu, J. Org. Chem., 2007,
72, 9219; (b) L. Huo, Y. Huang, B. Fan, X. Guo, Y. Jing,
M. Zhang, Y. Li and J. Hou, Chem. Commun., 2012, 48, 3318;
(c) C. Yi, C. Blum, M. Lehmann, S. Keller, S.-X. Liu, G. Frei,
A. Neels, J. Hauser, S. Schurch and S. Decurtins, J. Org. Chem.,
¨
2010, 75, 3350; (d) H. Tsuji, C. Mitsui, L. Ilies, Y. Sato and
E. Nakamura, J. Am. Chem. Soc., 2007, 129, 11902; (e) S. Keller,
C. Yi, C. Li, S.-X. Liu, C. Blum, G. Frei, O. Sereda, A. Neels,
T. Wandlowski and S. Decurtins, Org. Biomol. Chem., 2011,
9, 6410.
7 D. Yue, T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 10292.
8 (a) R. Stalder, J. Mei and J. R. Reynolds, Macromolecules, 2010,
43, 8348; (b) E. Wang, Z. Ma, Z. Zhang, K. Vandewal,
P. Henriksson, O. Inganas, F. Zhang and M. R. Andersson,
J. Am. Chem. Soc., 2011, 133, 14244.
9 T. Lei, Y. Cao, Y. Fan, C.-J. Liu, S.-C. Yuan and J. Pei, J. Am.
Chem. Soc., 2011, 133, 6099.
10 (a) C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and
G. C. Bazan, Adv. Mater., 2011, 23, 2367; (b) Y. Zhu,
R. D. Champion and S. A. Jenekhe, Macromolecules, 2006,
39, 8712.
Overall, PTinBDFID PVCs performed better than PToutBD-
FID-based devices in all categories. This is most likely an effect
of the polymer’s planarity on morphology, and is currently
being evaluated further. Although the performance of these
devices is lower than other conjugated polymers, this is our first
attempt toward fabricating PVCs from these materials. We note
that the performance of most new systems can be dramatically
improved by the optimization of processing parameters.
In conclusion, we report the efficient synthesis of novel
electron-rich building blocks based on 2,6-di(thiophen-2-yl)-
benzo[1,2-b:4,5-b0]difurans and their use for the development
of donor–acceptor copolymers. The highlights of this work are
the overall high yields of the reactions and the versatility of the
synthetic approach. The energy levels of the new polymers
are suitable for their use as donor materials in BHJ-PVCs.
Preliminary device studies have shown good Voc and FF, but
low overall performance. We are currently working toward
11 Z. Ma, E. Wang, M. E. Jarvid, P. Henriksson, O. Inganas,
F. Zhang and M. R. Andersson, J. Mater. Chem., 2012, 22, 2306.
12 (a) B. C. Thompson, Y.-G. Kim and J. R. Reynolds, Macromole-
cules, 2005, 38, 5359; (b) M. Scharber, D. Muhlbacher, M. Koppe,
P. Denk, C. Waldauf, A. Heeger and C. Brabec, Adv. Mater., 2006,
18, 789.
¨
13 Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuna, G. F. Burkhard,
J. A. Bartelt, A. Salleo, M. F. Toney and M. D. McGehee, Adv.
Energy Mater., 2011, 1, 954.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.