R. K. Mishra, M. T. Baker / Bioorg. Med. Chem. Lett. 22 (2012) 5608–5611
5611
3. Prasad, A.; Worrall, B. B.; Bertram, E. H.; Bleck, T. P. Epilepsia 2001, 42, 380.
4. Marik, P. E.; Varon, J. Chest 2004, 126, 582.
5. Deriu, P. L.; Petruzzi, V.; Testa, C.; Mulas, M.; Melis, F.; Caria, M. A.; Mameli Br. J.
Anaesth. 1992, 69, 177.
6. Holtkamp, M.; Tong, X.; Walker, M. C. Ann. Neurol. 2001, 49, 260.
7. Baker, M. T. Anesth. Analg. 2011, 112, 340.
8. Rigby-Jones, A. E.; Sneyd, J. R. Br. J. Anaesth. 2010, 105, 246.
9. Barton, M. E.; Klein, B. D.; Wolf, H. H.; White, H. S. Epilepsy Res. 2001, 47, 217.
10. Loscher, W. Seizure Eur. J. Epilepsy 2011, 20, 359.
11. Wuttke, T. V.; Lerche, H. Expert Opin. Investig. Drugs 2006, 15, 1167.
12. Stables, J. P.; Kupferberg, H. J., Ed. The NIH anticonvulsant drug development
(ADD) program: Preclinical anticonvulsant screening project. In: Avanzini, G.,
Tanganelli P., Avoli, M. Eds.; Molecular and cellular targets for antiepileptic
drugs; London: John Libbey, 1997; pp 191–8.
13. Medicinal Chemistry: An Introduction; Gareth, T., Ed.; John Wiley & Sons, Ltd:
West Sussex, England, 2007.
14. White, H. S.; Johnson, M.; Wolf, H. H.; Kupferberg, H. J. Ital. J. Neurol. Sci. 1995,
16, 73.
15. Swinyard, E. A.; Woodhead, J. H.; White, H. S.; Franklin, M. R. General
principles:experimental selection, quantification, and evaluation of
anticonvulsants. In Antiepileptic Drugs; Levy, R. H., Mattson, R. H., Melrum, B.,
Penry, J. K., Dreifuss, F. E., Eds., Third Edition; Raven Press: New York, 1989; pp
85–102.
16. Swinyard, E. A.; Wolf, H. H.; Clark, L. D.; Miyahara, J. T. J. Pharmacol. Exp. Ther.
1961, 132, 97.
17. Basil, L. F.; Nakano, H.; Frutos, R.; Kopach, M.; Meyers, A. I. Synth. Stuttgart
2002, 2064.
18. Gong, Y.; Kato, K.; Kimoto, H. J. Heterocycl. Chem. 2001, 38, 25.
19. Spectral data for selected compounds: 2-Bromo-6-isopropyl-4-(2,2,2-trifluoro-1-
hydroxy-ethyl)-phenol (3d): 1H NMR (CDCl3, 300 MHz): d 7.47 (d, J = 2 Hz, 1H),
7.24 (d, J = 2 Hz, 1H), 5.73 (s, 1H), 4.98–4.92 (m, 1H), 3.33 (sep, J = 7.2 Hz, 1H),
2.6 (d, J = 4.4 Hz, 1H), and 1.26 (dd, J = 7.2 Hz, 0.8 Hz, 6H); 13C NMR (DMSO-d6,
100 MHz): d 151.67, 137.99, 129.66, 129.40, 125.69 (q, J2CF = 282 Hz), 125.49,
111.75, 70.32 (q, J2CF = 30 Hz), 27.75, 23.28, and 23.23. 19F NMR-1H Decoupled
increased spatial properties via branching, provide both optimal
anesthetic (2,6-dialkyl phenols)1 and antiseizure (2-alkyl-4-HTFE
phenols) activity. The anticonvulsant effects of compounds having
branched or linear groups greater than 4 carbons have not been
determined.
An exception to the need for a branched alkyl group is com-
pound 3c. It contains the 2-n-propyl group which as the lone ortho
substituent (4c) was not an active compound. However, the
addition of bromine as the second ortho substituent (3c) created
a compound exerting complete protection at two time periods
after dosing of 100 mg/kg, 0.25 and 0.5 h. The ED50 of this com-
pound was not determined. The reason for this improved activity
is not known. This bromine being in an equivalent ortho position
to the n-propyl, may act in this molecule as an isostere of isopropyl
by providing important target interactions not provided by n-pro-
pyl. As a whole, the data suggest that the 6-substitution may be
viewed not as redundant, but as modulatory. This is reflected by
the differing effects of alkyl group removal. MB003 has an ED50
of 38.6 mg/kg,7 whereas 4d (removal of an isopropyl) is less effec-
tive with an ED50 of 84. MB050 has an ED50 of 73 mg/kg, but 4e (re-
moval of a sec-butyl group) is more effective with an ED50 of 53.85.
Compound effectiveness determined by the ED50s in this study
should be interpreted with some caution. Compounds were admin-
istered ip. Although all were given in 30% polyethylene glycol,
there could be differences in absorption into the systemic circula-
tion. Plasma or CNS levels of compound causing anticonvulsant
activity were not determined. It is not likely that the alterations
of the alkyl groups alone, for example isopropyl versus n-propyl,
had major effects on plasma or CNS concentrations of these
compounds.
The protective indices of the present compounds ranged from
1.6 to 3.6. Prior studies of propofol and 2,6-di-sec-butylphenol
showed that these two compounds had protective indices of only
1.1 and 1.3, respectively. Therefore, similar to the effect of 4-HTFE
substitution on 2,6-dialkyphenols, protective indices were also
broad with the 4-HTFE phenols reported here. It is not apparent
why 6-bromination of 2-isopropy-4-HTFE phenol (4d) but not
2-sec-butyl-4-HTFE phenol (4e) caused a multi-fold widening of
the PI.
The specific role of 4-HTFE in anticonvulsant activity remains to
be determined. It is hypothesized that 4-HTFE substitution dimin-
ishes the binding of alkyl phenols to sites that cause anesthesia and
sedation while not substantially disrupting binding to targets that
prevent seizures in the 6 Hz mouse model. Ample evidence indi-
cates that the anesthetic/sedative effects of 2,6-dialkyphenols re-
sult from stimulation of the inhibitory GABAA receptors.23
Consequently, the anticonvulsant effects of 4-HTFE phenols may
not be primarily mediated by GABAA receptors.
(DMSO-d6, 282 MHz)
d
À77.36. 2-Bromo-6-sec-Butyl-4-(2,2,2-trifluoro-1-
hydroxy-ethyl)-phenol (3e): 1H NMR (CDCl3, 300 MHz): d 7.45 (t, J = 2.4 Hz,
1H), 7.17 (t, J = 2.4 Hz, 1H), 5.67 (s, 1H), 4.96–4.90 (m, 1H), 3.14–3.05 (m, 1H),
2.56 (d, J = 4.4 Hz, 1H) 1.71–1.54 (m, 1H), 1.21 (dd, J = 7.2 Hz, 1.2 Hz, 3H), and
0.85 (dt, J = 7.6 Hz, 1.2 Hz, 3H); 13C NMR (DMSO-d6, 100 MHz): d 152.01,
136.70, 129.55, 129.33, 126.16, 125.65 (q, J1CF = 280 Hz), 111.77, 71.23 (q,
J2CF = 280 Hz), 34.42, 29.86, 21.18 and 12.49. 19F NMR-1H Decoupled ((DMSO-
d6, 282 MHz) d À77.45. 2-Bromo-6-n-propyl-4-(2,2,2-trifluoro-1-hydroxy-ethyl)-
phenol (3c): 1H NMR (CDCl3, 300 MHz): d 7.46 (s, 1H), 7.17 (s, 1H), 5.67 (s, 1H),
4.96–4.90 (m, 1H), 2.66 (t, J = 7.2 Hz, 2H), 2.55 (d, J = 4.0 Hz, 1H), 1.7–1.61 (m,
2H), and 0.97 (t, J = 7.2 Hz, 3H); 13C NMR (DMSO-d6, 100 MHz): d 152.40,
131.71, 130.04, 129.30, 128.98, 128.60 (q, J1CF = 280 Hz) 111.42, 70.15 (q,
J2CF = 30 Hz), 33.10, 23.2, and 14.4. 19F NMR-1H Decoupled ((DMSO-d6,
282 MHz) d À77.36. 2-Methyl-4-(2,2,2-trifluoro-1-hydroxy-ethyl)-phenol (4a):
1H NMR (CDCl3, 300 MHz): d 7.25 (s, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.80 (d,
J = 8.0 Hz, 1H), 4.97–4.91 (m, 1H), 4.95 (s, 1H), 2.54 (d, J = 4.4 Hz, 1H), and (s,
3H); 13C NMR (DMSO-d6, 100 MHz): d 156.53, 130.54, 126.82, 126.59, 125.90
(q, J1CF = 280 Hz), 124.21, 114.81, 71.5 (q, J2CF = 30 Hz), and 16.69. 19F NMR-1H
Decoupled (CDCl3, 282 MHz)
d
À77.20. 2-Ethyl-4-(2,2,2-trifluoro-1-hydroxy-
ethyl)-phenol (4b): 1H NMR (CDCl3, 300 MHz): d 7.24 (d, J = 2.0 Hz, 1H), 7.18
(dd, J = 6.4 Hz, 2.0 Hz, 1H), 6.78 (d, J = 7.2 Hz, 1H), 4.96–4.91 (m, 1H), 4.92 (s,
1H), 2.65 (q, J = 7.2 Hz, 2H), 2.52 (d, J = 4.4 Hz, 1H), and 1.24 (t, J = 7.6 Hz, 3H);
13C NMR (DMSO-d6, 100 MHz): d 156.12, 130.22, 129.00, 126.77,125.94 (q,
J1CF = 284 Hz), 115.05, 71.11 (q, J2CF = 30 Hz), 23.47 and 14.82. 19F NMR-1H
Decoupled (CDCl3, 282 MHz) d À77.21. 2-n-Propyl-4-(2,2,2-trifluoro-1-hydroxy-
ethyl)-phenol (4c): 1H NMR (CDCl3, 300 MHz): d 7.21 (d, J = 3.0 Hz, 1H), 7.17
(dd, J = 6.4 Hz, 3.0 Hz, 1H), 6.77 (d, J = 9 Hz), 4.96–4.87 (m, 1H), 4.80 (s, 1H),
2.57 (t, J = 9 Hz, 2H), 2.42 (d, J = 6.0 Hz, 1H), 1.69–1.57 (m, 1H), and 0.95 (t,
J = 9.0 Hz, 3H); 13C NMR (DMSO-d6, 100 MHz):
d 156.23, 129.90, 128.56,
126.79, 126.55, 125.96 (q, J1CF = 282 Hz), 151.10, 71.06 (q, J2CF = 30 Hz), 32.42,
23.15, and 14.55. 19F NMR-1H Decoupled ((DMSO-d6, 282 MHz) d À77.32. 2-
sec-Butyl-4-(2,2,2-trifluoro-1-hydroxy-ethyl)-phenol (4e): 1H NMR (CDCl3,
300 MHz): d 7.25 (t, J = 2.8 Hz, 1H), 7.19 (td, J = 6.4 Hz, 2.8 Hz, 1H), 6.79 (d,
J = 8.4 Hz, 1H), 4.99–4.92 (m, 1H), 4.90 (s, 1H), 3.02–2.94 (m, 1H), 2.50 (d,
J = 4.4 Hz, 1H), 1.72–1.24 (m, 1H), 1.25 (dd, J = 6.8 Hz, 2.0 Hz, 3H), and 0.88 (dt,
J = 7.2 Hz, 1.2 Hz, 3H); 13C NMR (DMSO-d6, 100 MHz): d 155.82, 133.23, 126.83,
126.75, 126.33, 125.92 (q, J1CF = 284 Hz), 115.21, 71.5 (q, J2CF = 30 Hz), 33.78,
In summary, 4-HTFE phenols having isopropyl or sec-butyl ortho
groups produce good antiseizure protection in the 6 Hz therapy-
resistant mouse model. Such compounds may be useful for the
treatment of seizures.
Acknowledgments
29.71, 20.99, and 12.67. 19F NMR-1H Decoupled ((DMSO-d6, 282 MHz)
d
À77.38. 2-iso-Propyl-4-(2,2,2-trifluoro-1-hydroxy-ethyl)-phenol (4d): 1H NMR
(CDCl3, 400 MHz): d 7.28 (s, 1H), 7.18 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H),
4.97–4.92 (m, 1H), 3.26–3.15 (m, 1H), and 1.26 (dd, J = 7.2 Hz, 0.8 Hz, 3H). 13C
NMR (DMSO-d6, 100 MHz): d 155.52, 134.49, 126.81, 126.47, 126.10, 125.94 (q,
J1CF = 282 Hz), 115.16, 71.24 (q, J2CF = 30 Hz), 27.02, 23.14, and 23.11. 19F
NMR-1H Decoupled ((DMSO-d6, 282 MHz) d À77.36.
This work was supported by a University of Iowa GIVF Grant.
The authors thank the NINDS Anticonvulsant Screening Program
and Sr. Toxicologist (NINDS ASP) Tracy Chen, Ph.D., D.A.B.T, for
screening the compounds.
20. Rogawski, M. A. Epilepsy Res. 2006, 69, 273.
21. Mares, P.; Stehlikova, M. Neurosci. Lett. 2010, 469, 396.
22. Malawska, B. Curr. Top. Med. Chem. 2005, 5, 69.
References and notes
23. Krasowski, M. D.; Hopfinger, A. J. Expert Opin. Drug Discov. 2011, 6, 1187.
1. James, R.; Glen, J. B. J. Med. Chem. 1980, 23, 1350.
2. Krasowski, M. D.; Jenkins, A.; Flood, P.; Kung, A. Y.; Hopfinger, A. J.; Harrison, N.
L. J. Pharmacol. Exp. Ther. 2001, 297, 338.