which calls for further time-resolved spectroscopy studies to
elucidate the dynamics of the turn on and off processes. This
external light triggered PL modulation capability can open a
new window for many applications.
This work was financially supported by a KOSEF grant
funded by MOST (20110018601), the Priority Research Center
Program through NRF (2011-0031405 and 20110027727),
(20110019635), the Basic Science Research Programs
(20110027236), and the Global Research Laboratory Program
(2011-00131).
Fig. 4 QD PL switching upon many repeated cycles for (a) o-QD-ADD
(1 : 50 molar ratio), (b) and CdTe/CdSe type-II QD-ADD (1 : 50 molar
ratio) with alternating on–off cycles of UV light under continuous visible
light illumination. Red and gray squares denote relative PL intensities at
their QD PL on and off status, respectively. Relative PL intensity is
defined as [QD–ADD complex PL intensity]/[non-surface modified QD
PL intensity]. The excitation power is 2.2 mW cmÀ2 for the 532 nm and
0.18 mW cmÀ2 for the 365 nm, respectively.
Notes and references
1 B. Qin, H. Chen, H. Liang, L. Fu, X. Liu, X. Qiu, S. Liu, R. Song
and Z. Tang, J. Am. Chem. Soc., 2010, 132, 2886.
when excited by 365 nm and 532 nm, respectively. IS represents
the intensity of o-QD-ADD, and IR the mixture control. The
PET-induced PL quenching efficiencies of 82%, 87%, and 98%
were obtained by increasing the ADD ratio from 2, 20 to 100
(Fig. 3b). This result indicates that a large number of electron
donors (ADDs) per QD can efficiently quench the QD PL when
excited at 365 nm. However, the quenching efficiencies for the
cases of 20 and 100 ADD ratios were actually lower than
expected. The actual numbers of ADDs on QD surfaces do not
seem to reach the nominal amounts presumably because of the
limited surface derivatization sites on QDs and increasing steric
and electrostatic repulsions for the additional ADD anchoring.
Fig. 4a showcases the reversible PL switching capability of
the o-QD-ADD sample (1 : 50 QD : ADD ratio) by repeated
UV excitation on–off modulation under continuous illumination
by 532 nm light. Additional UV irradiation suppressed the QD
PL intensity, and this was reversibly switched back by turning off
the UV excitation. The o-QD-ADD was at its ‘on’ status when
the UV excitation was ‘off’ and vice versa. We speculate that the
injected spectator electrons at QDs can transfer back to oxidized
ADDs, which should result in the charge neutralization and may
facilitate the reversible PL switching. This can be a prototype for
QD PL modulation by external light triggering. The average QD
PL quenching efficiency up to four repeated cycles was 24%.
CdTe/CdSe (core/shell) type-II QDs were prepared to test the PL
modulation capability by introducing ADD (see ESIw for the
synthetic procedures and Fig. S2 for their optical properties and
TEM images). The QD PL modulation experiment was repeated
using the type-II QDs (1 : 50 QD : ADD ratio) (Fig. 4b). The
average QD PL quenching efficiency was 40%. The type-II QDs
have unique exciton characteristics, where the electrons and holes
are spatially separated. The electrons reside mostly in the shells,
while the holes stay in the cores. The quenching efficiency was
enhanced for the type-II QD case presumably because of the
enhanced overlap between the shell-localized excitonic electrons
and the ADD originated electrons. Besides, the long lifetime of
type-II QD excitons7b,24 may have also contributed to enhanced
interactions between excitons and PET electrons. For both
o-QD-ADD and type-II QD-ADD samples, the PL modulations
were stably reversible over numerous times of switching cycles.
In summary, we have demonstrated a unique optical modulation
of QD PL by controlling the PET using our ADD surface ligands.
The switching response was faster than the milli-second scale,
2 (a) D. M. Willard and A. Van Orden, Nat. Mater., 2003, 2, 575;
(b) P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi
and D. G. Nocera, J. Am. Chem. Soc., 2006, 128, 13320.
3 A. D. Q. Li, C. Zhan, D. Hu, W. Wan and J. Yao, J. Am. Chem.
Soc., 2011, 133, 7628.
4 (a) M. J. Rust, M. Bates and X. Zhuang, Nat. Methods, 2006,
3, 793; (b) S. van de Linde, A. Loschberger, T. Klein,
M. Heidbreder, S. Wolter, M. Heilemann and M. Sauer, Nat.
Protocols, 2011, 6, 991.
5 (a) X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay,
S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and
S. Weiss, Science, 2005, 307, 538; (b) I. L. Medintz, H. T. Uyeda,
E. R. Goldman and H. Mattoussi, Nat. Mater., 2005, 4, 435.
6 (a) M. Han, X. Gao, J. Z. Su and S. Nie, Nat. Biotechnol., 2001,
19, 631; (b) M. Bruchez, M. Moronne, P. Gin, S. Weiss and
A. P. Alivisatos, Science, 1998, 281, 2013.
7 (a) I. L. Medintz, S. A. Trammell, H. Mattoussi and J. M. Mauro,
J. Am. Chem. Soc., 2003, 126, 30; (b) J. Bang, B. Chon, N. Won,
J. Nam, T. Joo and S. Kim, J. Phys. Chem. C, 2009, 113, 6320.
8 S. Coe, W.-K. Woo, M. Bawendi and V. Bulovic, Nature, 2002,
420, 800.
9 (a) X. Ji, G. Palui, T. Avellini, H. B. Na, C. Yi, K. L. Knappenberger
and H. Mattoussi, J. Am. Chem. Soc., 2012, 134, 6006; (b) I. L. Medintz,
A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. Tetsuo Uyeda,
E. L. Chang, J. R. Deschamps, P. E. Dawson and H. Mattoussi,
Nat. Mater., 2006, 5, 581.
10 L. Zhu, M.-Q. Zhu, J. K. Hurst and A. D. Q. Li, J. Am. Chem.
Soc., 2005, 127, 8968.
11 (a) D. Pacifici, H. J. Lezec and H. A. Atwater, Nat. Photonics,
2007, 1, 402; (b) C. Liu, Y. K. Kwon and J. Heo, Appl. Phys. Lett.,
2009, 94, 021103.
12 S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien and
S. J. Lippard, J. Am. Chem. Soc., 2001, 123, 7831.
13 R. Velu, E. J. Padma Malar, V. T. Ramakrishnan and P. Ramamurthy,
Tetrahedron Lett., 2010, 51, 5680.
14 A. Islam, P. Murugan, K. C. Hwang and C.-H. Cheng, Synth. Met.,
2003, 139, 347.
15 E. Kucur, J. Riegler, G. A. Urban and T. Nann, J. Chem. Phys.,
2003, 119, 2333.
16 J. Park, J. Nam, N. Won, H. Jin, S. Jung, S. Jung, S.-H. Cho and
S. Kim, Adv. Funct. Mater., 2011, 21, 1558.
17 (a) H. Mohan, N. Srividya, P. Ramamurthy and J. P. Mittal, J. Phys.
Chem. A, 1997, 101, 2931; (b) V. Thiagarajan, C. Selvaraju, E. J. P.
Malar and P. Ramamurthy, ChemPhysChem, 2004, 5, 1200.
18 P. P. Jha and P. Guyot-Sionnest, J. Phys. Chem. C, 2007, 111, 15440.
19 C. A. Leatherdale, W. K. Woo, F. V. Mikulec and M. G. Bawendi,
J. Phys. Chem. B, 2002, 106, 7619.
20 P. Shanmugasundaram, P. Murugan, V. T. Ramakrishnan,
N. Srividya and P. Ramamurthy, Heteroat. Chem., 1996, 7, 17.
21 C. d. M. Donega, Chem. Soc. Rev., 2011, 40, 1512.
22 M. Shim and P. Guyot-Sionnest, Nature, 2000, 407, 981.
23 A. J. Morris-Cohen, M. T. Frederick, L. C. Cass and E. A. Weiss,
J. Am. Chem. Soc., 2011, 133, 10146.
24 S. Kim, B. Fisher, H.-J. Eisler and M. Bawendi, J. Am. Chem. Soc.,
2003, 125, 11466.
c
9176 Chem. Commun., 2012, 48, 9174–9176
This journal is The Royal Society of Chemistry 2012