MedChemComm
Concise Article
3 P. Wang, Y. Zhang, K. Xu, Q. Li, H. Zhang, J. Guo, D. Pang,
Y. Cheng and H. Lei, Pharmazie, 2013, 68, 782–789.
4 P. Wang, Y. Cheng, K. Xu, Y. An, W. Wang, Q. Li, Q. Han, Q.
Li, H. Zhang and H. Lei, Asian J. Chem., 2013, 25, 4885–4888.
5 P. Wang, G. She, Y. Yang, Q. Li, H. Zhang, J. Liu, Y. Cao, X.
Xu and H. Lei, Molecules, 2012, 17, 4972–4985.
6 K. Xu, P. Wang, X. Xu, F. Chu, J. Lin, Y. Zhang and H. Lei,
Res. Chem. Intermed., 2013, DOI: 10.1007/s11164-013-1281-2.
7 P. Wang, H. Zhang, F. Chu, X. Xu, J. Lin, C. Chen, G. Li,
Y. Cheng, L. Wang and Q. Li, Molecules, 2013, 18,
13027–13042.
8 S. S. Choi, S. R. Lee, S. U. Kim and H. J. Lee, Exp. Neurobiol.,
2014, 23, 45–52.
9 C. S. Kidwell, D. S. Liebeskind, S. Starkman and J. L. Saver,
Stroke, 2001, 32, 1349–1359.
10 O. Lindvall and Z. Kokaia, Nature, 2006, 441, 1094–1096.
11 J. Tereshchenko, A. Maddalena, M. Bähr and S. Kügler,
Neurobiol. Dis., 2014, 65, 35–42.
Fig. 3 Protective effects of compound 9 (60 μM) against CoCl2-
induced injury in differentiated PC12 cells. The neurite-bearing ration
are shown as means
S.D. of at least 3 independent experiments.
*p ≤ 0.05 level, significance relative to CoCl2 group.
12 J. Shi, Q. Liu, Y. Wang and G. Luo, Pharmacol., Biochem.
Behav., 2010, 96, 449–453.
showed better protective effects than the ester derivatives,
which was in agreement with our previous study. In addition,
it suggests that the introduction of a trans olefinic bond
group and methoxy substituent may contribute to the
enhancement of the efficacy of such newly ligustrazine
derivatives.
Altogether, the results of the series of ligustrazine deriva-
tives support the potential value of neuroprotection, and
encourage us to pursue the drug optimization of this class of
molecules. Based on the SAR analysis, ligustrazine derivatives
with an ether bond, a methoxy substituent and an olefinic
group, which may be more neuroprotective, are being designed
and synthesized and will be reported in the near future.
13 X. Ni, S. Liu and X. Guo, J. Tradit. Chin. Med., 2013, 33,
715–720.
14 C. Lu, J. Zhang, X. Shi, S. Miao, L. Bi, S. Zhang, Q. Yang, X.
Zhou, M. Zhang, Y. Xie, Q. Miao and S. Wang, Int. J. Biol.
Sci., 2014, 10, 350–357.
15 H. Chen, G. Li, P. Zhan and X. Liu, Eur. J. Med. Chem.,
2011, 46, 5609–5615.
16 X. Cheng, X. Liu, W. Xu, X. Guo, N. Zhang and Y. Song,
Bioorg. Med. Chem., 2009, 17, 3018–3024.
17 Y. Nakajima, M. Shimazawa, S. Mishima and H. Hara, Life
Sci., 2007, 80, 370–377.
18 N. Ambhore, M. Prasanna, A. Antony, M. Satish Kumar and
K. Elango, Int. J. Health Allied Sci., 2014, 3, 14–22.
19 M. T. Mansouri, Y. Farbood, M. J. Sameri, A. Sarkaki, B.
Naghizadeh and M. Rafeirad, Food Chem., 2013, 138,
1028–1033.
Acknowledgements
This study was financially supported by the National Natural
Science Foundation of China (no. 81173519), the Innovation
Team Project Foundation of Beijing University of Chinese
Medicine (Lead Compound Discovering and Developing Inno-
vation Team Project Foundation, no. 2011-CXTD-15).
20 J. Liu, L. Feng, D. Ma, M. Zhang, J. Gu, S. Wang, Q. Fu, Y.
Song, Z. Lan and R. Qu, Neurosci. Lett., 2013, 549, 63–68.
21 H. J. Kim, I. K. Hwang and M. H. Won, Brain Res.,
2007, 1181, 130–141.
22 J. Hu, T. Zhao, W. Chu, C. Luo, W. Tang, L. Yi and H. Feng,
J. Cell. Biochem., 2010, 111, 1512–1521.
23 J. A. Crispo, D. R. Ansell, M. Piche, J. K. Eibl, N. Khaper,
G. M. Ross and T. Tai, Can. J. Physiol. Pharmacol., 2010, 88,
429–438.
24 X. Liu, R. Zhang, W. Xu, C. Li, Q. Zhao and X. Wang, Bioorg.
Med. Chem. Lett., 2003, 13, 2123–2126.
Notes and references
1 J. Zhang, H. Wang, H. Pi, H. Ruan, P. Zhang and J. Wu,
Steroids, 2009, 74, 424–434.
2 K. Xu, X. Xu, F. Chu, M. Wang, P. Wang, G. Li, J. Song, Y.
Zhang and H. Lei, Res. Chem. Intermed., 2014, DOI: 10.1007/
s11164-014-1737-z.
25 H. Chen, G. Li, P. Zhan, X. Guo, Q. Ding, S. Wang and X.
Liu, MedChemComm, 2013, 4, 827–832.
This journal is © The Royal Society of Chemistry 2015
Med. Chem. Commun., 2015, 6, 806–809 | 809