Page 7 of 8
Journal of the American Chemical Society
(2) Brevé, T. G.; Filius, M.; Araman, C.; van der Helm, M. P.; Click Reaction of Small Molecules, Proteins, and Cells. J. Am. Chem.
1
2
3
4
5
6
7
8
Hagedoorn, P.-L.; Joo, C.; van Kasteren, S. I.; Eelkema, R., Conditional
Copper-Catalyzed Azide–Alkyne Cycloaddition by Catalyst
Encapsulation. Angew. Chem. Int. Ed. 2020, 59, 9340-9344.
(3) Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.;
Toste, F. D., A supramolecular microenvironment strategy for transition
metal catalysis. Science 2015, 350, 1235-1238.
(4) Yang, Q.; Xu, Q.; Jiang, H.-L., Metal–organic frameworks meet
metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc.
Rev. 2017, 46, 4774-4808.
(5) Blackman, L. D.; Varlas, S.; Arno, M. C.; Houston, Z. H.; Fletcher,
N. L.; Thurecht, K. J.; Hasan, M.; Gibson, M. I.; O’Reilly, R. K.,
Confinement of Therapeutic Enzymes in Selectively Permeable
Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA)
Reduces Antibody Binding and Proteolytic Susceptibility. ACS Cent.
Sci. 2018, 4, 718-723.
(6) Rubio-Cervilla, J.; González, E.; Pomposo, J., Advances in Single-
Chain Nanoparticles for Catalysis Applications. Nanomaterials 2017, 7,
341-360.
(7) Mavila, S.; Eivgi, O.; Berkovich, I.; Lemcoff, N. G., Intramolecular
Cross-Linking Methodologies for the Synthesis of Polymer
Nanoparticles. Chem. Rev. 2016, 116, 878-961.
(8) Ouchi, M.; Badi, N.; Lutz, J.-F.; Sawamoto, M., Single-chain
technology using discrete synthetic macromolecules. Nat. Chem. 2011,
3, 917-924.
(9) Huurne, G. M. t.; Palmans, A. R. A.; Meijer, E. W., Supramolecular
Single-Chain Polymeric Nanoparticles. CCS Chemistry 2019, 1, 64-82.
(10) Chen, J.; Garcia, E. S.; Zimmerman, S. C., Intramolecularly
Cross-Linked Polymers: From Structure to Function with Applications
Soc. 2019, 141, 9693-9700.
(21) Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry:
Diverse Chemical Function from a Few Good Reactions. Angew. Chem.
Int. Ed. 2001, 40, 2004-2021.
(22) Blümmel, J.; Perschmann, N.; Aydin, D.; Drinjakovic, J.; Surrey,
T.; Lopez-Garcia, M.; Kessler, H.; Spatz, J. P., Protein repellent
properties of covalently attached PEG coatings on nanostructured
SiO2-based interfaces. Biomaterials 2007, 28, 4739-4747.
(23) Besanceney-Webler, C.; Jiang, H.; Zheng, T.; Feng, L.; Soriano
del Amo, D.; Wang, W.; Klivansky, L. M.; Marlow, F. L.; Liu, Y.; Wu, P.,
Increasing the Efficacy of Bioorthogonal Click Reactions for
Bioconjugation: A Comparative Study. Angew. Chem. Int. Ed. 2011, 50,
8051-8056.
(24) Mayer, M.; Meyer, B., Characterization of Ligand Binding by
Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int.
Ed. 1999, 38, 1784-1788.
(25) Vasile, F.; Menchi, G.; Lenci, E.; Guarna, A.; Potenza, D.;
Trabocchi, A., Insight to the binding mode of triazole RGD-
peptidomimetics to integrin-rich cancer cells by NMR and molecular
modeling. Biorg. Med. Chem. 2016, 24, 989-994.
(26) Neffe, A. T.; Bilang, M.; Meyer, B., Synthesis and optimization of
peptidomimetics as HIV entry inhibitors against the receptor protein
CD4 using STD NMR and ligand docking. Org. Biomol. Chem. 2006, 4,
3259-3267.
(27) Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.;
Wang, Q., A Fluorogenic 1,3-Dipolar Cycloaddition Reaction of 3-
Azidocoumarins and Acetylenes. Org. Lett. 2004, 6, 4603-4606.
(28) Supuran, C. T., Carbonic anhydrases: novel therapeutic
applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008,
7, 168-181.
(29) Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews,
C. M.; Deshaies, R. J., Protacs: Chimeric molecules that target proteins
to the Skp1–Cullin–F box complex for ubiquitination and degradation.
Proc. Natl. Acad. Sci. 2001, 98, 8554-8559.
(30) An, S.; Fu, L., Small-molecule PROTACs: An emerging and
promising approach for the development of targeted therapy drugs.
EBioMedicine 2018, 36, 553-562.
(31) Clavadetscher, J.; Hoffmann, S.; Lilienkampf, A.; Mackay, L.;
Yusop, R. M.; Rider, S. A.; Mullins, J. J.; Bradley, M., Copper Catalysis
in Living Systems and In Situ Drug Synthesis. Angew. Chem. Int. Ed.
2016, 55, 15662-15666.
(32) Kolb, H. C.; Sharpless, K. B., The growing impact of click
chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128-1137.
(33) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K., Click Chemistry
for Drug Development and Diverse Chemical–Biology Applications.
Chem. Rev. 2013, 113, 4905-4979.
(34) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B., Sulfur(VI)
Fluoride Exchange (SuFEx): Another Good Reaction for Click
Chemistry. Angew. Chem. Int. Ed. 2014, 53, 9430-9448.
(35) Meng, G.; Guo, T.; Ma, T.; Zhang, J.; Shen, Y.; Sharpless, K. B.;
Dong, J., Modular click chemistry libraries for functional screens using a
diazotizing reagent. Nature 2019, 574, 86-89.
(36) Sabharwal, S. S.; Schumacker, P. T., Mitochondrial ROS in
cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 2014,
14, 709-721.
(37) Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G. C.;
Sorba, G.; Genazzani, A. A., Rapid Synthesis of Triazole-Modified
Resveratrol Analogues via Click Chemistry. J. Med. Chem. 2006, 49,
467-470.
(38) Wang, F.; Zhang, Y.; Liu, Z.; Du, Z.; Zhang, L.; Ren, J.; Qu, X., A
Biocompatible Heterogeneous MOF–Cu Catalyst for In Vivo Drug
Synthesis in Targeted Subcellular Organelles. Angew. Chem. Int. Ed.
2019, 58, 6987-6992.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
as Artificial Antibodies and Artificial Enzymes. Acc. Chem. Res. 2020
.
(11) Cole, J. P.; Hanlon, A. M.; Rodriguez, K. J.; Berda, E. B., Protein-
like structure and activity in synthetic polymers. J. Polym. Sci., Part A:
Polym. Chem. 2017, 55, 191-206.
(12) Pomposo, J. A., Ed. Single-Chain Polymer Nanoparticles:
Synthesis, Characterization, Simulations, and Applications; John Wiley
& Sons, 2017
.
(13) Terashima, T.; Mes, T.; De Greef, T. F. A.; Gillissen, M. A. J.;
Besenius, P.; Palmans, A. R. A.; Meijer, E. W., Single-Chain Folding of
Polymers for Catalytic Systems in Water. J. Am. Chem. Soc. 2011, 133,
4742-4745.
(14) Liu, Y.; Pauloehrl, T.; Presolski, S. I.; Albertazzi, L.; Palmans, A.
R. A.; Meijer, E. W., Modular Synthetic Platform for the Construction of
Functional Single-Chain Polymeric Nanoparticles: From Aqueous
Catalysis to Photosensitization. J. Am. Chem. Soc. 2015, 137, 13096-
13105.
(15) Huerta, E.; Stals, P. J. M.; Meijer, E. W.; Palmans, A. R. A.,
Consequences of Folding
a Water-Soluble Polymer Around an
Organocatalyst. Angew. Chem. 2013, 125, 2978-2982.
(16) Chen, J.; Wang, J.; Bai, Y.; Li, K.; Garcia, E. S.; Ferguson, A. L.;
Zimmerman, S. C., Enzyme-like Click Catalysis by
a Copper-
Containing Single-Chain Nanoparticle. J. Am. Chem. Soc. 2018, 140,
13695-13702.
(17) Bai, Y.; Feng, X.; Xing, H.; Xu, Y.; Kim, B. K.; Baig, N.; Zhou, T.;
Gewirth, A. A.; Lu, Y.; Oldfield, E.; Zimmerman, S. C., A Highly
Efficient Single-Chain Metal–Organic Nanoparticle Catalyst for
Alkyne–Azide“Click” Reactions in Water and in Cells. J. Am. Chem. Soc.
2016, 138, 11077-11080.
(18) Chen, J.; Li, K.; Shon, J. S. L.; Zimmerman, S. C., Single-Chain
Nanoparticle Delivers a Partner Enzyme for Concurrent and Tandem
Catalysis in Cells. J. Am. Chem. Soc. 2020, 142, 4565-4569.
(19) Liu, Y.; Pujals, S.; Stals, P. J. M.; Paulöhrl, T.; Presolski, S. I.;
Meijer, E. W.; Albertazzi, L.; Palmans, A. R. A., Catalytically Active
Single-Chain Polymeric Nanoparticles: Exploring Their Functions in
Complex Biological Media. J. Am. Chem. Soc. 2018, 140, 3423-3433.
(20) Chen, J.; Wang, J.; Li, K.; Wang, Y.; Gruebele, M.; Ferguson, A.
L.; Zimmerman, S. C., Polymeric “Clickase” Accelerates the Copper
ACS Paragon Plus Environment
7