Journal of the American Chemical Society
Communication
(6) Crocker, P. R.; Paulson, J. C.; Varki, A. Nat. Rev. Immunol. 2007,
7, 255.
(7) O’Reilly, M. K.; Paulson, J. C. Trends Pharmacol. Sci. 2009, 30,
side were harvested and analyzed by flow cytometry.
Populations of T, B, and NK lymphocytes and myeloid cells
were identified using specific antibodies (Figure 4). Further-
more, Sn-positive myeloid cells (macrophages) were identified
using an anti-Sn antibody. The gated cell populations revealed
that the TCCNeu5Ac liposomes effectively targeted Sn-positive
myeloid cells, which was observed as a right shift in the
histogram (Figure 4A). There was no binding of targeted
liposomes to T, B, NK, or Sn-negative macrophages. Naked
liposomes did not bind to any cells. Furthermore, no binding of
targeted liposomes to macrophages from Sn KO mice was
detected, indicating that uptake of the liposomes was Sn-
dependent (Figure 4B).
In summary, we have described the successful development
of a high-affinity ligand for Sn suitable for use in targeting
liposomal nanoparticles to Sn-expressing cells in vivo. An
efficient in silico screen of a commercial building-block library
was performed to identify novel substituents of potential lead
compounds. From this screen, a small panel of selected target
structures were translated into sialoside derivatives with limited
synthetic effort as a result of the design strategy. Consequently,
a novel high-affinity ligand of Sn was identified. Targeted
liposomal nanoparticles displaying the ligand showed high
selectivity for human and murine Sn-expressing cells in vitro.
Further evaluation of the targeted liposomes in mice showed
effective in vivo targeting of Sn-positive macrophages. We
anticipate that delivery systems incorporating this novel ligand
for Sn will provide a powerful means of active in vivo delivery
of antigens or therapeutic agents to macrophages.
240.
(8) Zaccai, N. R.; Maenaka, K.; Maenaka, T.; Crocker, P. R.;
Brossmer, R.; Kelm, S.; Jones, E. Y. Structure 2003, 11, 557.
(9) Delputte, P. L.; Van Gorp, H.; Favoreel, H. W.; Hoebeke, I.;
Delrue, I.; Dewerchin, H.; Verdonck, F.; Verhasselt, B.; Cox, E.;
Nauwynck, H. J. PLoS One 2011, 6, No. e16827.
(10) Hartnell, A.; Steel, J.; Turley, H.; Jones, M.; Jackson, D. G.;
Crocker, P. R. Blood 2001, 97, 288.
(11) Murray, P. J.; Wynn, T. A. Nat. Rev. Immunol. 2011, 11, 723.
(12) Kelly, C.; Jefferies, C.; Cryan, S. A. J. Drug Delivery 2011,
No. 727241.
(13) Blixt, O.; Collins, B. E.; van den Nieuwenhof, I. M.; Crocker, P.
R.; Paulson, J. C. J. Biol. Chem. 2003, 278, 31007.
(14) Blixt, O.; Han, S. F.; Liao, L.; Zeng, Y.; Hoffmann, J.; Futakawa,
S.; Paulson, J. C. J. Am. Chem. Soc. 2008, 130, 6680.
(15) Mesch, S.; Moser, D.; Strasser, D. S.; Kelm, A.; Cutting, B.;
Rossato, G.; Vedani, A.; Koliwer-Brandl, H.; Wittwer, M.; Rabbani, S.;
Schwardt, O.; Kelm, S.; Ernst, B. J. Med. Chem. 2010, 53, 1597.
(16) Mesch, S.; Lemme, K.; Wittwer, M.; Koliwer-Brandl, H.;
Schwardt, O.; Kelm, S.; Ernst, B. ChemMedChem 2012, 7, 134.
(17) Magesh, S.; Ando, H.; Tsubata, T.; Ishida, H.; Kiso, M. Curr.
Med. Chem. 2011, 18, 3537.
(18) Chen, W. C.; Completo, G. C.; Sigal, D. S.; Crocker, P. R.;
Saven, A.; Paulson, J. C. Blood 2010, 115, 4778.
(19) Chen, W. C.; Kawasaki, N.; Nycholat, C. M.; Han, S.; Pilotte, J.;
Crocker, P. R.; Paulson, J. C. PLoS One 2012, 7, No. e39039.
(20) Fadda, E.; Woods, R. J. Drug Discovery Today 2010, 15, 596.
(21) Ernst, B.; Magnani, J. L. Nat. Rev. Drug Discovery 2009, 8, 661.
(22) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew,
R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785.
(23) Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B. Y.; Zhang, J.
B.; Zhang, Y. X.; Jia, Q.; Chen, X. J. Am. Chem. Soc. 2005, 127, 17618.
ASSOCIATED CONTENT
* Supporting Information
■
S
Supplementary synthetic scheme, experimental protocols,
synthetic methods, and compound characterization. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Present Address
‡Max Planck Institute of Colloids and Interfaces, Department
of Biomolecular Systems, 14424 Potsdam, Germany.
Author Contributions
†C.M.N. and C.R. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
C.R. thanks EMBO for a long-term fellowship. This work was
supported by the National Institutes of Health (P01HL107151
and R01AI05143).
REFERENCES
■
(1) Torchilin, V. P. Nat. Rev. Drug Discovery 2005, 4, 145.
(2) Trapani, G.; Denora, N.; Trapani, A.; Laquintana, V. J. Drug
Targeting 2012, 20, 1.
(3) Lepenies, B.; Yin, J. A.; Seeberger, P. H. Curr. Opin. Chem. Biol.
2010, 14, 404.
(4) Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N. K. Biomaterials 2012,
33, 4166.
(5) Xie, R.; Hong, S. L.; Feng, L. S.; Rong, J.; Chen, X. J. Am. Chem.
Soc. 2012, 134, 9914.
15699
dx.doi.org/10.1021/ja307501e | J. Am. Chem. Soc. 2012, 134, 15696−15699