Fig. 3 Partial 1H NMR spectra of (a) macrocycle 1, (b) an equimolar mixture of 1 and 3, (c) the mixture obtained after adding an excess of TFA
to the solution in (b), and (d) the mixture obtained after adding an excess of TEA to the solution in (c) (4 mM, CDCl3, 295 K, 400 MHz).
binding ability of the macrocycle. Thus, the pyridine N-oxide-
based pseudorotaxanes can be considered to be suitable
candidates for the development of acid–base-controllable14
molecular machines and switches.
A. Trabolsi, Y.-W. Yang, M. Elhabri, A.-M. Albrecht-Gary and
J. F. Stoddart, J. Am. Chem. Soc., 2009, 131, 7126.
4 S. J. Loeb and J. A. Wisner, Angew. Chem., Int. Ed., 1998, 37, 2838.
5 P. R. Ashton, B. Odell, M. V. Reddington, A. M. Z. Slawin,
J. F. Stoddart and D. J. Williams, Angew. Chem., Int. Ed. Engl.,
1988, 27, 1550.
In summary, we have demonstrated that pyridine N-oxide
derivatives, as new motifs, can form stable [2]pseudorotaxanes,
which are stabilized by multiple and cooperative hydrogen
bonding and p–p stacking interactions, with diamide-based
macrocycles in solution and in the solid state; and the
dethreading/rethreading process of the resulting [2]pseudo-
rotaxanes is reversible under acid–base control. These findings
may offer an alternative approach for constructing a variety of
new supramolecular structures with interlocked [n]rotaxanes
and [n]catenanes. In particular, it might be useful for develop-
ment of new nanoscale molecular machines and devices.
This study was supported by the National Natural
Science Foundation of China (No. 20672038) and Natural
Science Foundation of Guangdong Province of China
(No. 8151063101000015). We wish to thank Dr David E.
Finlow (Shawnee State University) for his help with correcting
and proofreading this manuscript.
6 (a) D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and
D. J. Williams, J. Chem. Soc., Chem. Commun., 1991, 1584;
(b) M. Asakawa, P. R. Ashton, V. Balzani, A. Credi,
G. Mattersteig, O. A. Matthews, M. Montalti, N. Spencer,
J. F. Stoddart and M. Venturi, Chem.–Eur. J., 1997, 3, 1992.
7 (a) M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart,
C. Vicent and D. J. Williams, J. Chem. Soc., Chem. Commun.,
1991, 630; (b) R. Ballardini, V. Balzani, M. T. Gandolfi, L. Prodi,
M. Venturi, D. Philp, H. G. Ricketts and J. F. Stoddart, Angew.
Chem., Int. Ed. Engl., 1993, 32, 1301.
8 (a) J. A. Wisner, M. G. B. Drew and P. D. Beer, Angew. Chem., Int.
Ed., 2001, 40, 3606; (b) M. S. Vickers and P. D. Beer, Chem. Soc.
Rev., 2007, 36, 211; (c) K. M. Mullen, J. Mercurio, C. J. Serpell
and P. D. Beer, Angew. Chem., Int. Ed., 2009, 48, 4781;
(d) K. M. Mullen and P. D. Beer, Chem. Soc. Rev., 2009, 38, 1701.
9 For recent publications, see: (a) S. Pailloux, C. E. Shirima,
A. D. Ray, E. N. Duesler, K. A. Smith, R. T. Paine,
J. R. Klaehn, M. E. McIlwain and B. P. Hay, Dalton Trans.,
2009, 7486; (b) R. Sarma, A. Perumal and J. B. Baruah, J. Coord.
Chem., 2009, 62, 1513; (c) S. Pailloux, C. E. Shirima, A. D. Ray,
E. N. Duesler, R. T. Paine, J. R. Klaehn, M. E. McIlwain and
B. P. Hay, Inorg. Chem., 2009, 48, 3104; (d) W. Yang, X. Lin,
A. J. Blake, C. Wilson, P. Hubberstey and N. R. Champness,
CrystEngComm, 2009, 11, 67; (e) M. Polasek, J. Kotek,
P. Hermann, I. Cisarova, K. Binnemans and I. Lukes, Inorg.
Chem., 2009, 48, 466; (f) R. Sarma, A. Karmakar and
J. B. Baruah, Inorg. Chem., 2008, 47, 763; (g) E. Deiters,
V. Bulach and M. H. Wais, New J. Chem., 2008, 32, 99.
Notes and references
1 For recent reviews, see: (a) J. F. Stoddart, Chem. Soc. Rev., 2009,
38, 1802; (b) K. K. Cotı, M. E. Belowich, M. L. M. W. Ambrogio,
´
Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Khashab and
J. F. Stoddart, Nanoscale, 2009, 1, 16; (c) E. R. Kay,
D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed., 2007, 46,
72; (d) B. Champin, P. Mobian and J. P. Sauvage, Chem. Soc. Rev.,
2007, 36, 358.
2 (a) B. L. Allwood, N. Spencer, H. Shahriari-Zavareh,
J. F. Stoddart and D. J. Williams, J. Chem. Soc., Chem. Commun.,
1987, 1064; (b) Q. Li, W. Zhang, O. S. Miljanic, C. B. Knobler,
J. F. Stoddart and O. M. Yaghi, Chem. Commun., 2010, 46, 380;
10 (a) J. Chen and N. Takenaka, Chem.–Eur. J., 2009, 15, 7268;
(b) G. Chelucci, G. Murineddu and G. A. Pinna,
Tetrahedron: Asymmetry, 2004, 15, 1373.
11 (a) C. Dolain, C. Zhan, J.-M. Le
Chem. Soc., 2005, 127, 2400; (b) D. Haldar, H. Jiang, J.-M. Le
and I. Huc, Angew. Chem., Int. Ed., 2006, 45, 5483.
´
ger, L. Daniels and I. Huc, J. Am.
´
ger
12 (a) B. Verdejo, G. Gil-Ramirez and P. Ballester, J. Am. Chem. Soc.,
2009, 131, 3178; (b) K. Ghosh, G. Masanta and A. P. Chattopadhyay,
Eur. J. Org. Chem., 2009, 4515; (c) S. J. Dalgarno, J. E. Warren,
J. L. Atwood and C. L. Raston, New J. Chem., 2008, 32, 2100.
13 The pKa values of protonated pyridine N-oxides derivatives have
been reported, see: (a) A. Wawrzyow and L. Chmurzynski,
(c) Q. Li, W. Zhang, O. S. Miljanic, C.-H. Sue, C. Knobler,
´
Y.-L. Zhao, L. Liu, J. F. Stoddart and O. M. Yaghi, Science,
2009, 325, 855.
3 (a) P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink,
S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. T. Tasker and
D. J. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 1865;
(b) P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer,
C. Schiavo, N. Spencer, J. F. Stoddart, P. T. Tasker, A. J.
P. White and D. J. Williams, Chem.–Eur. J., 1996, 2, 709;
(c) L. Fang, M. Hmadeh, J. Wu, M. A. Olson, J. M. Spruell,
J. Chem. Thermodyn., 1998, 30, 713; (b) L. Chmurzyn
´
ski,
J. Heterocycl. Chem., 2000, 37, 71.
14 K. C. Leung, C. P. Chak, C. M. Lo, W. Y. Wong, S. Xuan and
C. H. Cheng, Chem.–Asian J., 2009, 4, 364.
ꢄc
This journal is The Royal Society of Chemistry 2010
3934 | Chem. Commun., 2010, 46, 3932–3934