LETTER
Catalysts for Highly Enantioselective Alkenylzinc Additions to Aldehydes
919
CDCl3): d = 146.79, 145.25, 143.44, 129.04, 127.77, 127.59,
127.22, 126.62, 126.55, 126.50, 126.04, 125.72, 73.95,
73.89, 41.46, 23.80. ESI-HRMS: m/z calcd for C34H29NO +
Na+: 490.2147; found: C34H29NO + Na+: 490.2141.
Compound 2: yield 74%; pale yellow oil; [a]D22 –82.8 (c 1,
CHCl3). 1H NMR (300 MHz, CDCl3): d = 7.51–7.18 (m, 15
H), 3.05 (br s, 1 H), 1.94 (d, 1 H, J = 3.3 Hz), 1.62–1.43 (m,
1 H), 1.41–1.29 (m, 4 H), 1.14 (d, 1 H, J = 6.4 Hz), 0.73 (q,
6 H, J = 7.5 Hz). 13C NMR (75 MHz, CDCl3): d = 144.03,
129.37, 127.40, 126.68, 73.97, 70.82, 40.18, 31.93, 28.23,
23.51, 8.13, 7.73. ESI-HRMS: m/z calcd for C26H29NO +
Na+: 394.2141; found: C26H29NO + Na+: 394.2147
Compound 3: yield 82%; mp 174–176 °C; [a]D22 +22 (c 1,
CHCl3). 1H NMR (300 MHz, CDCl3): d = 7.46–6.98 (m, 25
H), 3.05 (s, 1 H), 2.20 (d, 1 H, J = 6.7 Hz), 1.66 (q, 1 H,
J = 6.0 Hz), 1.19 (d, 3 H, J = 5.8 Hz). 13C NMR (75 MHz,
CDCl3): d = 148.39, 146.04, 143.80, 143.68, 129.34, 128.60,
127.80, 127.74, 127.29, 126.79, 126.64, 126.03, 125.52,
75.17, 73.50, 45.21, 31.99, 1376. ESI-HRMS: m/z calcd for
C35H31NO + Na+: 504.2303; found: C35H31NO + Na+:
504.2297.
References and Notes
(1) (a) Evans, D. A. Science 1988, 240, 420. (b) Noyori, R.;
Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49.
(c) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
(d) Soai, K.; Shibata, T. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.;
Springer: Berlin, 1999, 911.
(2) (a) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757. (b) Pu, L.
Tetrahedron 2003, 59, 9873.
(3) (a) Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125,
10677. (b) Garcia, C.; Libra, E. R.; Carroll, P. J.; Walsh, P.
J. J. Am. Chem. Soc. 2003, 125, 3210. (c) Jeon, S.-J.;
Walsh, P. J. J. Am Chem. Soc. 2003, 125, 9544. (d) Lurain,
A. E.; Carroll, P. J.; Walsh, P. J. J. Org. Chem. 2005, 70,
1262. (e) Kim, H. Y.; Lurain, A. E.; Garcia-Garcia, P.;
Carroll, P. J.; Walsh, P. J. J. Am Chem. Soc. 2005, 127,
13138. (f) Lurain, A. E.; Maestri, A.; Kelly, A. R.; Carroll,
P. J.; Walsh, P. J. J. Am Chem. Soc. 2005, 126, 13608.
(4) (a) Oppolzer, W.; Radinov, R. N. Tetrahedron Lett. 1988,
29, 5645. (b) Oppolzer, W.; Radinov, R. N. Tetrahedron
Lett. 1991, 32, 5777.
(11) General Procedure for the Alkenylzinc Addition to
Aldehydes
(5) (a) Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75,
10. (b) Oppolzer, W.; Radinov, R. N.; El-Sayed, E. J. Org.
Chem. 2001, 66, 4766.
Cyclohexene (608 mL, 3.0 mmol) was added under argon at
0 °C to a magnetically stirred solution of borane dimethyl-
sulfide complex (142 mL, 1.5 mmol) in toluene (1 mL). After
2 h at 0 °C the alkyne (1.5 mmol) was added and the mixture
was stirred for 30 min at r.t. The mixture was cooled to
–78 °C and a solution of Et2Zn (2 mL, 1 mmol, 1.0 M in
toluene) or Me2Zn solution (1.5 mL, 3 mmol, 2 M in toluene)
was added slowly to this and after 1 h at –78 °C, a toluene
solution of ligand (0.1 mL, 1 M in toluene, 0.1 mmol) was
added. After warming from –78 °C to –30 °C over a period
of 1 h, toluene (1 mL) and the aldehyde (1 mmol) were added
and the mixture was stirred for 18 h at –20 °C. The reaction
mixture was quenched with H2O, Et2O was added and the
organic layer was subsequently extracted with brine. The
organic layer was dried over MgSO4 and the solvent was
removed in vacuo. The residue was purified through column
chromatography on silica gel to provide the enantio-
merically pure allyl alcohol.
(6) (a) Soai, K.; Takahashi, K. J. Chem. Soc., Perkin Trans. 1
1994, 1257. (b) Shibata, T.; Nakatsui, K.; Soai, K. Inorg.
Chim. Acta 1999, 296, 33. (c) Dahmen, S.; Bräse, S. Org.
Lett. 2001, 3, 4119. (d) Ji, J.-X.; Qiu, L.-Q.; Yip, C.-W.;
Chan, A. S. C. J. Org. Chem. 2003, 68, 1589. (e) Chen, Y.
K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124,
12225. (f) Tseng, S.-L.; Yang, T.-K. Tetrahedron:
Asymmetry 2005, 16, 773. (g) Sprout, C. M.; Richmond, M.
L.; Seto, C. T. J. Org. Chem. 2005, 70, 7408.
(h) Richmond, M. L.; Sprout, C. M.; Seto, C. T. J. Org.
Chem. 2005, 70, 8835.
(7) For some representative examples, see: (a) Braga, A. L.;
Appelt, H. R.; Schneider, P. H.; Silveira, C. C.; Wessjohann,
L. A. Tetrahedron: Asymmetry 1999, 10, 1733. (b) Braga,
A. L.; Paixão, M. W.; Lüdtke, D. S.; Silveira, C. C.;
Rodrigues, O. E. D. Org. Lett. 2003, 5, 2635. (c) Braga, A.
L.; Milani, P.; Paixão, M. W.; Zeni, G.; Rodrigues, O. E. D.;
Alves, E. F. Chem. Commun. 2004, 2488. (d) Braga, A. L.;
Lüdtke, D. S.; Vargas, F.; Paixão, M. W. Chem. Commun.
2005, 2512. (e) Braga, A. L.; Lüdtke, D. S.; Schneider, P.
H.; Vargas, F.; Schneider, A.; Wessjohann, L. A.; Paixão, M.
W. Tetrahedron Lett. 2005, 45, 7827.
Conditions for Determining Enantiomeric Excess by
HPLC Analysis
All measurements were performed at a 20 °C column
temperature using a UV detector at 219 nm.
(S,E)-1-Phenylhept-2-en-1-ol (Table 1, entries 1–10):
Chiralcel OD-H column eluted with hexane–2-PrOH (99:1)
at 1.0 mL/min; tR = 22.0 min for R and tR = 32.3 min for S.
(S,E)-1-Phenylnon-2-en-1-ol (Table 2, entry 1): Chiralcel
OD-H column eluted with hexane–2-PrOH (99:1) at 1.0 mL/
min; tR = 20.7 min for R and tR = 32.3 min for S.
(S,E)-4,4-Dimethyl-1-phenylpent-2-en-1-ol (Table 2,
entry 2): Chiralcel OD-H column eluted with hexane–2-
PrOH (99:1) at 1.0 mL/min; tR = 14.1 min for R and tR = 22.3
min for S.
(S,E)-3-Cyclohexyl-1-phenylprop-2-en-1-ol (Table 2,
entry 3): Chiralcel OD-H column eluted with hexane–2-
PrOH (99:1) at 1.0 mL/min; tR = 21.9 min for R and tR = 33.2
min for S.
(S,E)-(4-Tolylphenyl)-4,4-dimethylpent-2-en-1-ol
(Table 2, entry 4): Chiralcel OD-H column eluted with
hexane–2-PrOH (98:2) at 0.5 mL/min; tR = 18.3 min for R
and tR = 20.5 min for S.
(8) Braga, A. L.: Paixao, M. W.; Westermann, B.; Schneider, P.
H.; Wessjohann, L. A.; Chem. Eur. J., in press.
(9) General Procedure for the Synthesis of Ligands 1–3
The Grignard reagent (25 mmol) in THF (10 mL, 2.5 M
solution) was added dropwise over a period of 10 min to a
solution of the appropriate aziridine ester (5 mmol) in 10 mL
of THF. After 1.5 h the reaction was quenched with sat. aq
NH4Cl (30 mL) followed by the evaporation of the organic
solvents. The residue was extracted with Et2O (3 × 50 mL)
and the combined organic layers were dried (MgSO4) and
concentrated to give the product. The crude product was
purified by flash column chromatography on silica (hexane–
EtOAc, 12:1); Et3N was added to the eluent to prevent
detritylation of the product during the purification
procedure. Recrystallization was achieved from MeOH–
Et3N by a hot solution.
(10) Compound 1: yield 70%; mp 133.5–134.5 °C; [a]D22 –78.8
(c 1, CHCl3). 1H NMR (300 MHz, CDCl3): d = 7.45–7.34 (d,
2 H, J = 7.3 Hz), 7.32–7.12 (m, 8 H), 7.09–7.04 (m, 15 H),
4.44 (br s, 1 H), 2.38 (dd, 1 H, J = 6.2, 3.1 Hz), 2.08 (d, 1 H,
J = 3.1 Hz), 1.32 (d, 1 H, J = 6.2 Hz). 13C NMR (75 MHz,
(S,E)-1-(4-Methoxyphenyl)-4,4-dimethylpent-2-en-1-ol
(Table 2, entry 5): Chiralcel OD-H column eluted with
hexane–2-PrOH (99:1) at 1.0 mL/min; tR = 25.5 min for R
and tR = 32.5 min for S.
Synlett 2007, No. 6, 917–920 © Thieme Stuttgart · New York