5486
S. Mishra et al. / Tetrahedron Letters 53 (2012) 5483–5487
Acknowledgments
S.M. (SRF) and B.N. (JRF) are grateful to UGC and CSIR, India,
respectively for their research fellowships. CAS-UGC and FIST-
DST, New Delhi, India are acknowledged for supporting research
facilities to the Department of Chemistry, Jadavpur University.
References and notes
1. (a) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010–
3021; (b) Kumaravel, K.; Vasuki, G. Green Chem. 2009, 11, 1945–1947; (c)
Gupta, A. K.; Kumari, K.; Singh, N.; Raghuvanshi, D. S.; Singh, K. N. Tetrahedron
Lett. 2012, 53, 650–653; (d) Kumaravel, K.; Vasuki, G. Curr. Org. Chem. 2009, 13,
1820–1841.
2. Reviews on one-pot multicomponent syntheses: (a) Armstrong, R. W.; Combs,
A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123–
131; (b) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210; (c) Zhu,
J. Eur. J. Org Chem. 2003, 1133–1144; (d) Ramón, D. J.; Yus, M. Angew. Chem., Int.
Ed. 2005, 44, 1602–1634; (e) Dömling, A. Chem. Rev. 2006, 106, 17–89; (f)
Chapman, C. J.; Frost, C. G. Synthesis 2007, 1–21.
3. (a) Dickerson, T. J.; Reed, N. N.; Janada, K. D. Chem. Rev. 2002, 102, 3325–3344;
(b) Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64–
82; (c) Heldebrant, D.; Jessop, P. G. J. Am. Chem. Soc. 2003, 125, 5600–5601.
4. (a) Jain, S. L.; Singhal, S.; Sain, B. Green Chem. 2007, 9, 740–741; (b) Suryakiran,
S.; Reddy, T. S.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. Tetrahedron
Lett. 2006, 47, 3853–3856; (c) Smith, C. B.; Raston, C. L.; Sobolev, A. N. Green
Chem. 2005, 7, 650–654; (d) Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.;
Reddy, N. R. Chem. Commun. 2003, 1716–1717; (e) Smith, N. M.; Raston, C. L.;
Smith, C. B.; Sobolev, A. N. Green Chem. 2007, 9, 1185–1190; (f) Zhang, Q.; Chen,
J.-X.; Ding, J.-C.; Wu, H.-Y. Appl. Organomet. Chem. 2010, 24, 809–812; (g)
Verma, S.; Jain, S. L.; Sain, B. Beil. J. Org. Chem. 2011, 7, 1334–1341.
5. (a) Pyne, S. G. Curr. Org. Synth. 2005, 2, 39–57; (b) Honda, T.; Namiki, H.;
Nagase, H.; Mizutani, H. Tetrahedron Lett. 2003, 44, 3035–3058; (c) Wei, L.;
Drossi, A.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H. In Studies in Natural
Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: New York, 2008; Vol. 34, pp
3–34; (d) Toyooka, N.; Zhou, D.; Nemoto, H.; Garraffo, H. M.; Spande, T. F.; Daly,
W.; John, W. Beil. J. Org. Chem. 2007, 3, 29; (e) Marsden, S. P.; McElhinney, A. D.
Beil. J. Org. Chem. 2008, 4, 8; (f) Zumino, F.; Kotchevar, A. T.; Waring, M.; Daoudi,
M.; Larbi, N. B.; Mimouni, M.; Sam, N.; Zahidi, A.; Ben-Hadda, T. Molecules 2002,
7, 628–640; (g) Pourashraf, M.; Delair, P.; Rasmussen, M. O.; Greene, A. E. J. Org.
Chem. 2006, 65, 6966–6972; (h) Diederich, M.; Nubbemeyer, U. Synthesis 1999,
286–289; (i) Chalard, P.; Remuson, R.; Mialhe, Y. G.; Gramain, J. C.; Canet, I.
Tetrahedron Lett. 1999, 40, 1661–1664; (j) Park, S. H.; Kang, H. J.; Ko, S.; Park, S.;
Chang, S. Tetrahedron: Asymmetry 2001, 12, 2621–2624.
Figure 2. ORTEP diagram of 4b.
O
Ph
Cu
HCl
O
O
CHO
+
N
CuCl
N
N
1a
N
H
A
N
B
H2O
C
Ph
2a
N
H
Ph
CuCl
6. (a) Facompré, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.;
Cuevas, C.; Baily, C. Cancer Res. 2003, 63, 7392–7399; (b) Vanhuyse, M.; Kluza,
J.; Tardy, C.; Otero, G.; Cuevas, C.; Bailly, C.; Lansiaux, A. Cancer Lett. 2005, 221,
165–175.
5-endo dig
Cyclisation
-
O
Cl
O
N
7. (a) Dawood, K.; Abdel-Gawad, H.; Ellithey, M.; Mohamed, H. A.; Hegazi, B. Arch.
Pharm. 2006, 339, 133–140; (b) Krall, R. L.; Penry, J. K.; White, B. G.; Kupferberg,
H. J.; Swinyard, E. A. Epilepsia 1978, 19, 409–428; (c) Gundersen, L.-L.; Negussie,
A. H.; Rise, F.; Østby, O. B. Arch. Pharm. Pharm. Med. Chem. 2003, 336, 191–195;
(d) Gunderson, L.-L.; Charnock, C.; Negussie, A. H.; Rise, F. Eur. J. Pharm. Sci.
2007, 30, 26–35; (e) Smith, S. C.; Clarke, E. D.; Ridley, S. M.; Bartlett, D.;
Greenhow, D. T.; Glithro, H.; Klong, A. Y.; Mitchell, G.; Mullier, G. W. Pest
Manag. Sci. 2005, 61, 16–24; (f) Østby, O. B.; Dalhus, B.; Gundersen, L.-L.; Rise,
F.; Bast, A.; Haenen, G. R. M. Eur. J. Org. Chem. 2000, 3763–3769; (g) Poty, C.;
Gibon, V.; Evrard, G.; Norberg, B.; Vercauteren, D. P.; Gubin, J.; Chatelain, P.;
Durant, F. Eur. J. Org. Chem. 1994, 29, 911–923; (h) Chai, W.; Breitenbucher, J.
G.; Kwok, A.; Li, X.; Wong, V.; Carruthers, T. W.; Lovenberg, T. W.; Mazur, C.;
Wilson, S. J.; Axe, F. U.; Jones, T. K. Bioorg. Med. Chem. Lett. 2003, 13, 1767–1770;
(i) Gmeiner, P.; Huebner, H.; Bettinetti, L.; Schlotter, K. PCT Int. Appl. WO
015737, 2006.
8. (a) Wang, P.; Zhang, Z.; Ma, X.; Huang, Y.; Liu, X.; Tu, P.; Tong, T. Mech. Ageing
Dev. 2003, 124, 1025–1034; (b) Facompre, M.; Tardy, C.; Bal-Mahieu, C.; Colson,
P.; Perez, C.; Manzanares, I.; Cuevas, C.; Baily, C. Cancer Res. 2003, 63, 7392–
7399; (c) Foster, C.; Ritchie, M.; Selwood, D. L.; Snowden, W. Antivir. Chem.
Chemother. 1995, 6, 289–297; (d) Gubin, J.; Descamps, M.; Chatelain, P.; Nisato,
D. Eur. Pat. Appl. EP 235111, 1987.; (e) Harrell, W. B. J. Pharm. Sci. 1970, 59,
275–277; (f) Pla, D.; Marchal, A.; Olsen, C. A.; Francesch, A.; Cuevas, C.;
Albericio, F.; Alvarez, M. J. Med. Chem. 2006, 49, 3257–3268; (g) Ballot, C.;
Kluza, J.; Martoriati, A.; Nyman, U.; Formstecher, P.; Joseph, B.; Bailly, C.;
Marchetti, P. Mol. Cancer Ther. 2009, 8, 3307–3317.
N
H
-H+
Cu
Ph
N
+
D
N
CuCl
+H+
Ph
Ph
H
4a
3a
Scheme 2. Proposed mechanism.
per acetylide intermediate A is generated. A reacts with iminium
ion B, in situ generated by the reaction of pyridine-2-carboxalde-
hyde (1a) with morpholine (2a), producing the corresponding
propargylamine C. It then undergoes cyclization (5 endo-dig) to
give finally 1-morpholinylindolizine product (4a).
In summary, a facile, economic, and green protocol for a one-pot
multicomponent synthesis of the biologically potent indolizine
scaffold has been described by the reaction of pyridine-2-carboxal-
dehyde/quinoline-2-carboxaldehyde, secondary amines, and ter-
minal alkynes. The salient features in favor of the present
procedure being greater operational simplicity, low reaction time,
and general high isolated yields of products. In addition, the use
of a non-toxic and inexpensive catalytic system and a non-hazard-
ous solvent system greatly augments the green credentials of the
present protocol for its further ramification for large scale produc-
tion of these pharmacologically potent heterocyclic compounds.
Biological screening of some of the tailor-made aminoindolizines
and analogs is underway for future publication.
9. (a) Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. In Comprehensive Heterocyclic
Chemistry; Pergamon: Oxford, 1996; Vol. 8, pp 237–257.; (b) Gandaségui, M. T.;
Alvarez-Builla, J. J. Chem. Res. 1986, 74–75; (c) Seregin, I. V.; Schammel, A. W.;
Gevorgyan, V. Org. Lett. 2007, 9, 3433–3436; (d) Seregin, I. V.; Gevorgyan, V. J.
Am. Chem. Soc. 2006, 128, 12050–12051; (e) Chernyak, D.; Skontos, C.;
Gevorgyan, V. Org. Lett. 2010, 12, 3242–3245; (f) Barluenga, J.; Lonzi, G.;
Riesgo, L.; López, L. A.; Tomás, M. J. Am. Chem. Soc. 2010, 132, 13200–13202; (g)
Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. Org. Lett. 2008, 10, 2307–2310;
(h) Liu, Y.; Song, Z.; Yan, B. Org. Lett. 2007, 9, 409–412; (i) Chernyak, D.;