Journal of the American Chemical Society
Page 8 of 10
Reactions of Enynes. J. Am. Chem. Soc. 2007, 129, 5836-5837. (g)
(20) (a) Li, M.; Gutierrez, O.; Berritt. S.; Pascual-Escudero, A.;
Matsumoto, A.; Ilies, L.; Nakamura, E. Phenanthrene Synthesis by
Iron-Catalyzed [4+2] Benzannulation between Alkyne and Biaryl or
2-Alkenylphenyl Grignard Reagent. J. Am. Chem. Soc. 2011, 133,
6557-6559. (h) Ilies, L.; Isomura, M.; Yamauchi, S.; Nakamura, T.;
Nakamura, E. Indole Synthesis via Cyclative Formation of 2,3-
Dizincioindoles and Regioselective Electrophilic Trapping. J. Am.
Chem. Soc. 2017, 139, 23-26. (i) Ruhl, K. E.; Rovis, T. Visible Light-
Gated Cobalt Catalysis for a Spatially and Temporally Resolved
[2+2+2] Cycloaddition. J. Am. Chem. Soc. 2016, 138, 15527-15530.
(13) Patel, M.; Saunthwal, R. K.; Verma, A. K. Base-Mediated
Hydroamination of Alkynes. Acc. Chem. Res. 2017, 50, 240-254.
(14) (a) McKerrall, S. J.; Joergensen, L.; Kuttruff, C. A.;
Ungeheuer, F.; Baran, P. S. Development of a Concise Synthesis of (+)-
Ingenol. J. Am. Chem. Soc. 2014, 136, 5799-5810. (b) Trost, B. M.;
Dong, G. Total Synthesis of Bryostatin 16 Using a Pd-Catalyzed
Diyne Coupling as Macrocyclization Method and Synthesis of C20-
epi-Bryostatin 7 as a Potent Anticancer Agent. J. Am. Chem. Soc.
2010, 132, 16403-16416. (c) Wang, T.; Hoye, T. R. Hexadehydro-
Diels–Alder (HDDA)-Enabled Carbazolyne Chemistry: Single Step,
de Novo Construction of the Pyranocarbazole Core of Alkaloids of
the Murraya koenigii (Curry Tree) Family. J. Am. Chem. Soc. 2016,
138, 13870-13873.
(15) (a) Corey, E. J.; Fuchs, P. L. A Synthetic Method for Formyl
→Ethynyl Conversion (RCHO→RC≡CH or RC≡CR′). Tetrahedron
Lett. 1972, 13, 3769-3772. (b) Habrant, D.; Rauhala, V.; Koskinen, A.
M. P. Conversion of carbonyl compounds to alkynes: general
overview and recent developments. Chem. Soc. Rev. 2010, 39, 2007-
2017.
(16) (a) Horner, L.; Hoffmann, H.; Wippel, H. G.
Phosphororganische Verbindungen, XII. Phosphinoxyde als
Olefinierungsreagenzien. Chem. Ber. 1958, 91, 61-63. (b) Horner, L.;
Hoffmann, H.; Wippel, H. G.; Klaher, G. Phosphororganische
Verbindungen, XX. Phosphinoxyde als Olefinierungsreagenzien.
Chem. Ber. 1959, 92, 2499-2505. (c) Wadsworth, W. S Jr.; Emmons,
W. D. The Utility of Phosphonate Carbanions in Olefin Synthesis. J.
Am. Chem. Soc. 1961, 83, 1733-1738.
(17) (a) Gilbert, J. C.; Weerasooriya, U. Diazoethenes: Their
Attempted Synthesis from Aldehydes and Aromatic Ketones by Way
of the Horner-Emmons Modification of the Wittig Reaction. A Facile
Synthesis of Alkynes. J. Org. Chem. 1982, 47, 1837-1845. (b) Muller,
S.; Liepold, B.; Roth, G. J.; Bestman, H. J. An Improved One-pot
Procedure for the Synthesis of Alkynes from Aldehydes. Synlett 1996,
521-522.
(18) (a) Morri, A. K.; Thummala. Y.; Doddi, V. R. The Dual Role
of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in the Synthesis of
Terminal Aryl- and Styryl-Acetylenes via Umpolung Reactivity. Org.
Lett. 2015, 17, 4640-4643. (b) Liu, S.; Chen, X.; Hu, Y.; Yuan, L.;
Chen, S.; Wu, P.; Wang, W.; Zhang, S.; Zhang, W. An Efficient
Method for the Production of Terminal Alkynes from 1,1-Dibromo-1-
alkenes and its Application in the Total Synthesis of Natural Product
Dihydroxerulin. Adv. Synth. Catal. 2015, 357, 553-560. (c) Wang, Z.;
Campagna, S.; Yang, K.; Xu, G.; Pierce, M. E.; Fortunak, J. M.;
Confalone, P. N. A Practical Preparation of Terminal Alkynes from
Aldehydes. J. Org. Chem. 2000, 65, 1889-1891. (d) Okutani, M.;
Mori, Y. Conversion of Bromoalkenes into Alkynes by Wet Tetra-n-
butylammonium Fluoride. J. Org. Chem. 2009, 74, 442-444. (e)
Quesada, E.; Taylor, R. J. K. One-pot conversion of activated
alcohols into terminal alkynes using manganese dioxide in
combination with the Bestmann–Ohira reagent. Tetrahedron Lett.
2005, 46, 6473-6476.
Yesilcimen, A.; Yang, X.; Adrio, J.; Huang, G.; Nakamaru-Ogiso, E.;
Kozlowski, M. C.; Walsh, P. J. Transition-metal-free chemo- and
regioselective vinylation of azaallyls. Nature Chem. 2017, 9, 997-
1004. (b) Negishi, E.; King, A. O.; Klima, W. L.; Patterson, W.;
Silveira, A. Jr. Conversion of methyl ketones into terminal acetylenes
and (E)-trisubstituted olefins of terpenoid origin. J. Org. Chem. 1980,
45, 2526-2528. (c) Huang, D. F.; Shen, T. Y. A versatile total
synthesis of epibatidine and analogs. Tetrahedron Lett. 1993, 34,
4477-4480. (d) Clasby, M. C.; Craig, D. A Convenient Method for the
Preparation of 1-(Phenylsulfonyl)-1-alkynes. Synlett 1992, 825-826.
(e) Leclercq, M.; Brienne, M.-J. A simple and versatile synthesis of
substituted ethynesulfonamides. Tetrahedron Lett. 1990, 31, 3875-
3878. (f) Lyapkalo, I. M.; Vogel, M. A. K.; Boltukhina, E. V.; Vavřík,
J. Thieme Chemistry Journal Awardees - Where are They Now? A
General One-Step Synthesis of Alkynes from Enolisable Carbonyl
Compounds. Synlett 2009, 558-561.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(21) Shah, T. K.; Medina, J. M.; Garg, N. K. Expanding the
Strained Alkyne Toolbox: Generation and Utility of Oxygen-
Containing Strained Alkynes. J. Am. Chem. Soc. 2016, 138, 4948-
4954.
(22) Li, X.; Liu, X.; Chen, H.; Wu, W.; Qi, C.; Jiang, H.
Copper‐Catalyzed
Aerobic
Oxidative
Transformation
of
Ketone‐Derived N‐Tosyl Hydrazones: An Entry to Alkynes. Angew.
Chem., Int. Ed. 2014, 53, 14485-14489.
(23) (a) Pagan-Torres, Y. J.; Wang, T.; Gallo, J. M. R.; Shanks, B.
H.; Dumesic, J. A. Production of 5-Hydroxymethylfurfural from
Glucose Using a Combination of Lewis and Brønsted Acid Catalysts
in Water in a Biphasic Reactor with an Alkylphenol Solvent. ACS
Catal. 2012, 2, 930-934. (b) Zhao, H.; Holladay, J. E.; Brown, H.;
Zhang, Z. C. Metal Chlorides in Ionic Liquid Solvents Convert Sugars
to 5-Hydroxymethylfurfural. Science 2007, 316, 1597-1600.
(24) (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Catalytic,
Asymmetric Halofunctionalization of Alkenes—A Critical
Perspective. Angew. Chem., Int. Ed. 2012, 51, 10938-10953. (b)
Schmid, G. H. The Chemistry of Double Bonded Functional Groups;
Vol. 2, Part 1; Patai, S., VCH-Wiley: New York, 1989, 679. (c) Karki,
M.; Magolan, J. Bromination of Olefins with HBr and DMSO. J. Org.
Chem. 2015, 80, 3701-3707.
(25) (a) Zheng, J.; Liu, K.; Reneker, D. H.; Becker, M. L. Post-
Assembly Derivatization of Electrospun Nanofibers via Strain-
Promoted Azide Alkyne Cycloaddition. J. Am. Chem. Soc. 2012, 134,
17274-17277. (b) Kutsumura, N.; Kubokawa, K.; Saito, T. TBAF-
Promoted Dehydrobrominations of Vicinal Dibromides Having an
Adjacent O-Functional Group. Synlett 2010, 2717-2720.
(26) (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice, Oxford University Press, Oxford, 1998. (b) Sanderson, K.
Chemistry: It's not easy being green. Nature 2011, 469, 18-20. (c)
Toutov, A. A.; Liu, W.-B.; Betzl, K. N.; Fedorov, A.; Stoltz, B. M.;
Grubbs, R. H. Silylation of C–H bonds in aromatic heterocycles by an
Earth-abundant metal catalyst. Nature 2015, 518, 80-84.
(27) (a) Sulbaek Andersen, M. P.; Blake, D. R.; Rowland, F. S.;
Hurley, M. D.; Wallington, T. J. Atmospheric Chemistry of Sulfuryl
Fluoride: Reaction with OH Radicals, Cl Atoms and O3, Atmospheric
Lifetime, IR Spectrum, and Global Warming Potential. Environ. Sci.
Technol. 2009, 43, 1067-1070. For recent reviews of using SO2F2 gas,
see: (b) Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B.
Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for
Click Chemistry. Angew. Chem., Int. Ed. 2014, 53, 9430-9448. (c)
Revathi, L.; Ravindar, L.; Leng, J.; Rakesh, K. P.; Qin, H.-L.
Synthesis and Chemical Transformations of Fluorosulfates. Asian J.
Org. Chem. 2018, 7, 662-682. (d) For small-scale usage, SO2F2 was
reported to be accessible from the reaction of SO2Cl2 with KF, see:
Veryser, C.; Demaerel, J.; Bieliūnas, V.; Gilles, P.; De Borggraeve,
W. M. Ex Situ Generation of Sulfuryl Fluoride for the Synthesis of
Aryl Fluorosulfates. Org. Lett. 2017, 19, 5244-5247. (e). For large-
scale usage, the SO2F2 is commercially available from chemical
(19) (a) Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.
W. Renewable Chemical Commodity Feedstocks from Integrated
Catalytic Processing of Pyrolysis Oils. Science 2010, 330, 1222-1227.
(b) Barta, K.; Ford, P. C. Catalytic Conversion of Nonfood Woody
Biomass Solids to Organic Liquids. Acc. Chem. Res. 2014, 47, 1503-
1512.
vendors
world
widely:
8
ACS Paragon Plus Environment