Page 5 of 8
Journal of the American Chemical Society
Advances in alpha-Alkylation Reactions using Alcohols with
Supporting Information
1
2
3
4
5
6
7
8
Hydrogen Borrowing Methodologies. ACS Catal. 2014, 4, 3972-
3981. (e) Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a
Substrate-Activating Strategy in Homogeneous Transition-Metal
Catalysis. Chem. Rev. 2010, 110, 681-703. (f) Hamid, M.; Slatford,
P. A.; Williams, J. M. J. Borrowing Hydrogen in the Activation of
Alcohols. Adv. Synth. Catal. 2007, 349, 1555-1575. (g) Nixon, T.
D.; Whittlesey, M. K.; Williams, J. M. J. Transition Metal
Catalysed Reactions of Alcohols using Borrowing Hydrogen
Methodology. Dalton Trans. 2009, 753-762. (h) Bahn, S.; Imm, S.;
Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. The Catalytic
Amination of Alcohols. ChemCatChem 2011, 3, 1853-1864. (i)
Watson, A. J. A.; Williams, J. M. J. The Give and Take of Alcohol
Activation. Science 2010, 329, 635-636. (j) Leonard, J.; Blacker,
A. J.; Marsden, S. P.; Jones, M. F.; Mulholland, K. R.; Newton, R.
A Survey of the Borrowing Hydrogen Approach to the Synthesis
of some Pharmaceutically Relevant Intermediates. Org. Process
Res. Dev. 2015, 19, 1400-1410.
Experimental
procedures,
optimization
tables,
troubleshooting, robustness screen, characterization of
organic molecules, mechanistic studies. This material is
ACKNOWLEDGEMENT
Financial support for this work was provided by the University
of Ottawa, the National Science and Engineering Research
Council of Canada (NSERC), the Canada Research Chair
program. The Canadian Foundation for Innovation (CFI) and
the Ontario Ministry of Research, Innovation, & Science are
thanked for essential infrastructure. T.V. thanks FWO-
vlaanderen for the FWO-SB PhD fellowship received. E.S.I.
thanks NSERC for a graduate fellowship.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) (a) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V.
J.; Krische, M. J. Metal-Catalyzed Reductive Coupling of Olefin-
Derived Nucleophiles: Reinventing Carbonyl Addition. Science
2016, 354, 5. (b) Shibahara, F.; Bower, J. F.; Krische, M. J.
REFERENCES
(1) (a) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Redox
Economy in Organic Synthesis. Angew. Chem., Int. Ed. 2009, 48,
2854-2867. (b) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. The
Economies of Synthesis. Chem. Soc. Rev. 2009, 38, 3010-3021.
(2) For recent examples of this 3 step sequence being used in
medicinal chemistry, see: (a) An, H.; Lee, S.; Lee, J. M.; Jo, D. H.;
Kim, J.; Jeong, Y.-S.; Heo, M. J.; Cho, C. S.; Choi, H.; Seo, J. H.;
Hwang, S.; Lim, J.; Kim, T.; Jun, H. O.; Sim, J.; Lim, C.; Hur, J.;
Ahn, J.; Kim, H. S.; Seo, S.-Y.; Na, Y.; Kim, S.-H.; Lee, J.; Lee,
J.; Chung, S.-J.; Kim, Y.-M.; Kim, K.-W.; Kim, S. G.; Kim, J. H.;
Suh, Y.-G. Novel Hypoxia-Inducible Factor 1α (HIF-1α) Inhibitors
for Angiogenesis-Related Ocular Diseases: Discovery of a Novel
Scaffold via Ring-Truncation Strategy. J. Med. Chem. 2018, 61,
9266-9286. (b) Torikai, K.; Koga, R.; Liu, X. H.; Umehara, K.;
Kitano, T.; Watanabe, K.; Oishi, T.; Noguchi, H.; Shimohigashi,
Y. Design and Synthesis of Benzoacridines as Estrogenic and Anti-
Estrogenic Agents. Bioorg. Med. Chem. 2017, 25, 5216-5237. (c)
Kojima, T.; Mochizuki, M.; Takai, T.; Hoashi, Y.; Morimoto, S.;
Seto, M.; Nakamura, M.; Kobayashi, K.; Sako, Y.; Tanaka, M.;
Kanzaki, N.; Kosugi, Y.; Yano, T.; Aso, K. Discovery of 1,2,3,4-
Tetrahydropyrimido 1,2-a Benzimidazoles as Novel Class of
Corticotropin Releasing Factor 1 Receptor Antagonists. Bioorg.
Med. Chem. 2018, 26, 2229-2250. (d) Wu, Y. J.; Guernon, J.;
McClure, A.; Luo, G. L.; Rajamani, R.; Ng, A.; Easton, A.;
Newton, A.; Bourin, C.; Parker, D.; Mosure, K.; Barnaby, O.;
Soars, M. G.; Knox, R. J.; Matchett, M.; Pieschl, R.; Herrington,
J.; Chen, P.; Sivarao, D. V.; Bristow, L. J.; Meanwell, N. A.;
Bronson, J.; Olson, R.; Thompson, L. A.; Dzierba, C. Discovery of
Non-Zwitterionic Aryl Sulfonamides as Na(v)1.7 Inhibitors with
Efficacy in Preclinical Behavioral Models and Translational
Measures of Nociceptive Neuron Activation. Bioorg. Med. Chem.
2017, 25, 5490-5505. (e) Azevedo, C. M. G.; Afonso, C. M. M.;
Sousa, D.; Lima, R. T.; Vasconcelos, M. H.; Pedro, M.; Barbosa,
J.; Correa, A. G.; Reis, S.; Pinto, M. M. M. Multidimensional
Optimization of Promising Antitumor Xanthone Derivatives.
Bioorg. Med. Chem. 2013, 21, 2941-2959.
Ruthenium-Catalyzed
C-C
Bond
Forming
Transfer
Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde
Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to
Preformed Allyl Metal Reagents. J. Am. Chem. Soc. 2008, 130,
6338-6339. (c) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische, M.
J. Catalytic Carbonyl Addition through Transfer Hydrogenation: A
Departure from Preformed Organometallic Reagents. Angew.
Chem., Int. Ed. 2009, 48, 34-46. (d) Ketcham, J. M.; Shin, I.;
Montgomery, T. P.; Krische, M. J. Catalytic Enantioselective C-H
Functionalization of Alcohols by Redox-Triggered Carbonyl
Addition: Borrowing Hydrogen, Returning Carbon. Angew. Chem.,
Int. Ed. 2014, 53, 9142-9150.
(6) (a) Swyka, R. A.; Zhang, W. D.; Richardson, J.; Ruble, J. C.;
Krische, M. J. Rhodium-Catalyzed Aldehyde Arylation via
Formate-Mediated Transfer Hydrogenation: Beyond Metallic
Reductants in Grignard/Nozaki-Hiyami-Kishi-Type Addition. J.
Am. Chem. Soc. 2019, 141, 1828-1832. (b) Garcia, K. J.; Gilbert,
M. M.; Weix, D. J. Nickel-Catalyzed Addition of Aryl Bromides to
Aldehydes To Form Hindered Secondary Alcohols. J. Am. Chem.
Soc. 2019, 141, 1823-1827.
(7) For examples of Ni catalyzed oxidation state-manipulating
strategies see: (a) Herath, A.; Li, W.; Montgomery, J. Fully
Intermolecular Nickel-Catalyzed Three-Component Couplings via
Internal Redox. J. Am. Chem. Soc. 2008, 130, 469-471. (b) Bausch,
C. C.; Patman, R. L.; Breit, B.; Krische, M. J. Divergent
Regioselectivity in the Synthesis of Trisubstituted Allylic Alcohols
by
Nickel-
and
Ruthenium-Catalyzed
Alkyne
Hydrohydroxymethylation with Formaldehyde. Angew. Chem., Int.
Ed. 2011, 50, 5686-5689. (c) Montgomery, J. Nickel-catalyzed
reductive cyclizations and couplings. Angew. Chem., Int. Ed. 2004,
43, 3890-3908. (d) Tasker, S. Z.; Standley, E. A.; Jamison, T. F.
Recent Advances in Homogeneous Nickel Catalysis. Nature 2014,
509, 299-309. (e) Vellakkaran, M.; Singh, K.; Banerjee, D. An
Efficient and Selective Nickel-Catalyzed Direct N-Alkylation of
Anilines with Alcohols. ACS Catal. 2017, 7, 8152-8158. (f) Yang,
P.; Zhang, C. L.; Ma, Y.; Zhang, C. Y.; Li, A. J.; Tang, B.; Zhou,
J. R. S. Nickel-Catalyzed N-Alkylation of Acylhydrazines and
Arylamines Using Alcohols and Enantioselective Examples.
Angew. Chem., Int. Ed. 2017, 56, 14702-14706. (g) Das, J.; Singh,
K.; Vellakkaran, M.; Banerjee, D. Nickel-Catalyzed Hydrogen-
Borrowing Strategy for alpha-Alkylation of Ketones with
Alcohols: A New Route to Branched gem-Bis(alkyl) Ketones. Org.
Lett. 2018, 20, 5587-5591.
(3) Anastas, P.; Eghbali, N. Green Chemistry: Principles and
Practice. Chem. Soc. Rev. 2010, 39, 301-312.
(4) For relevant reviews see: (a) Corma, A.; Navas, J.; Sabater, M.
J. Advances in One-Pot Synthesis through Borrowing Hydrogen
Catalysis. Chem. Rev. 2018, 118, 1410-1459. (b) Holmes, M.;
Schwartz, L. A.; Krische, M. J. Intermolecular Metal-Catalyzed
Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl
Compounds and Imines. Chem. Rev. 2018, 118, 6026-6052. (c)
Yang, Q.; Wang, Q. F.; Yu, Z. K. Substitution of Alcohols by N-
Nucleophiles via Transition Metal-Catalyzed Dehydrogenation.
Chem. Soc. Rev. 2015, 44, 2305-2329. (d) Obora, Y. Recent
(8) (a) Vandavasi, J. K.; Hua, X. Y.; Ben Halima, H.; Newman, S.
G. A Nickel-Catalyzed Carbonyl-Heck Reaction. Angew. Chem.,
Int. Ed. 2017, 56, 15441-15445. (b) Vandavasi, J. K.; Newman, S.
5
ACS Paragon Plus Environment