Journal of the American Chemical Society
Communication
(5) For selected reviews, see: (a) Cheng, R. P.; Gellman, S. H.;
DeGrado, W. F. Chem. Rev. 2001, 101, 3219. (b) Horne, W. S.;
Gellman, S. H. Acc. Chem. Res. 2008, 41, 1399.
Scheme 1. Derivatization of Azomethine Imines
(6) Selected reviews: (a) Juaristi, E.; ; Soloshonok, V.A. Enantioselective
Synthesis of β-Amino Acids, 2nd ed.; Wiley: New York, 2005.
(b) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 117.
(7) (a) Hegedus, L. S.; Allen, G. F.; Olsen, D. J. J. Am. Chem. Soc.
1980, 102, 3583. (b) Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc.
1982, 104, 2444. (c) Tamura, Y.; Hojo, M.; Higashimura, H.; Yoshida,
Z. J. Am. Chem. Soc. 1988, 110, 3994. (d) Cernak, T. A.; Lambert,
T. H. J. Am. Chem. Soc. 2009, 131, 3124. (e) Ambrosini, L. M.; Cernak,
T. A.; Lambert, T. H. Synthesis 2010, 870. (f) Ambrosini, L. M.;
Cernak, T. A.; Lambert, T. H. Tetrahedron 2010, 66, 4882. (g) For a
review, see: Beccalli, E. D.; Broggini, G.; Martinelli, M.; Sottocornola,
S. Chem. Rev. 2007, 107, 5318.
(8) For reviews, see: (a) Rasmussen, J. K.; Hassner, A. Chem. Rev.
1976, 76, 389. (b) Dhar, D. N.; Murthy, K. S. K. Synthesis 1986, 437.
(c) Furman, B.; Borsuk, K.; Kaluza, Z.; Lysek, R.; Chmielewski, M.
Curr. Org. Chem. 2004, 8, 463.
(9) (a) Roveda, J.-G.; Clavette, C.; Hunt, A. D.; Gorelsky, S. I.;
Whipp, C. J.; Beauchemin, A. M. J. Am. Chem. Soc. 2009, 131, 8740.
(b) For a seminal review, see: Reichen, W. Chem. Rev. 1978, 78, 569.
(10) For a recent review, see: Wentrup, C.; Finnerty, J. J.; Koch, R.
Curr. Org. Chem 2011, 15, 1745.
a
b
Conditions: KBH4, Ra-Ni, MeOH, 60 °C, 3 h. SOCl2, MeOH,
60 °C, 12 h. c SOCl2, MeOH, 60 °C, 12 h; then 10 M NaOH, rt. d DDQ,
THF, 0 °C, 2 h; HCl (1 M).
(11) Jones, D. W. J. Chem. Soc., Chem. Commun. 1982, 766.
(12) Hutchby, M.; Houlden, C. E.; Ford, J. G.; Tyler, S. N. G.;
Gagne, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem.,
́
Int. Ed. 2009, 48, 8721.
(13) In addition to a competing [3 + 2] with C7H10, a plausible
decomposition pathway involves dimerization of the imino-isocyanate
intermediate: for related reactivity, see: Lockley, W. J. S.;
Ramakrishnan, V. T.; Lwowski, W. Tetrahedron Lett. 1974, 2621.
(14) Recent exemples: (a) Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.;
Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard,
W. A., III; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337 (and
cited references). (b) Hashimoto, T.; Kimura, H.; Kawamata, Y.;
Maruoka, K. Nat. Chem. 2011, 3, 642. (c) Shintani, R.; Fu, G. C. J. Am.
generated imino-isocyanate intermediate. In addition, a simple
fluorenone-derived reagent (2h) yields azomethine imine adducts
that can be converted into β-aminoamides and other derivatives
after mild reductive cleavage of the N−N bond. Improvements
and applications of this reactivity are under active investigation
and will be reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Complete experimental procedures and characterization, revers-
ibility studies, computational details, X-ray crystal structures, and
NMR spectra. This material is available free of charge via the
́
Chem. Soc. 2003, 125, 10778. (d) Suarez, A.; Downey, C. W.; Fu, G. C.
J. Am. Chem. Soc. 2005, 127, 11244. (e) Shintani, R.; Hayashi, T. J. Am.
Chem. Soc. 2006, 128, 6330. (f) Chen, W.; Yuan, X.-H.; Li, R.; Du, W.;
Wu, Y.; Ding, L.-S.; Chen, Y.-C. Adv. Synth. Catal. 2006, 348, 1818.
(g) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334.
(h) Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131,
11654.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(15) For reviews, see: (a) Struckwisch, C. G. Synthesis 1973, 469.
(b) Rodina, L. L.; Kolberg, A.; Schulze, B. Heterocycles 1998, 49, 587.
(c) Schantl, J. G. In Science of Synthesis; Padwa, A., Bellus, D., Eds.;
Thieme Verlag: Stuttgart, 2004; Vol. 27, pp 731−824.
(16) Preliminary investigations with reagents 1a and 1d showed
reduced aminocarbonylation reactivity in comparison with reagent 2h.
Typically the use of solvent-free conditions and excess alkene with
reagents 1a and 1d provides higher yields of the azomethine imines.
(17) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C. T.;
Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Schafer, A.;
Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
(18) For related reactivity, see: Magnus, P.; Garizi, N.; Seibert, K. A.;
Ornholt, A. Org. Lett. 2009, 11, 5646.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the University of Ottawa, CCRI, CFI, the Ontario MRI,
NSERC (Discovery Grant and Discovery Accelerator Supplement
to A.M.B.) and AstraZeneca Canada for partial support of this
work. Support of related work by GreenCentre Canada is also
gratefully acknowledged. C.C. is thankful to NSERC (CREATE
on medicinal chemistry and biopharmaceutical development)
and OGS for scholarships and to AstraZeneca Canada for an
internship. W.G. thanks the University of Ottawa (Vision 2020
Postdoctoral fellowship). A.B. is thankful to NSERC (CGS-M).
We also thank Dr. Korobkov for X-ray crystallographic analyses.
(19) Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki,
M. Angew. Chem., Int. Ed. 2000, 39, 1650.
(20) Alexakis, A.; Lensen, N.; Mangeney, P. Synlett 1991, 625.
(21) Li, L.-C.; Ren, J.; Liao, T.-G.; Jiang, J.-X.; Zhu, H.-J. Eur. J. Org.
Chem. 2007, 1026.
REFERENCES
■
(1) For a review, see: Kuhl, A.; Hahnl, M. G.; Dumic, M.; Mittendorf,
J. Amino Acids 2005, 29, 89.
(22) (a) Dorn, H.; Otto, A. Chem. Ber. 1968, 101, 3287. (b) Pezdirc,
L.; Glose
2008, 45, 181.
̌
lj, U.; Meden, A.; Stanovnik, B.; Svete, J. J. Heterocycl. Chem.
(2) For selected reviews, see: (a) Steer, D. L.; Lew, R. A.; Perlmutter,
P.; Smith, A. I.; Aguilar, M.-I. Curr. Med. Chem. 2002, 9, 811.
(b) Seebach, D.; Gardiner, J. Acc. Chem. Res. 2008, 41, 1366.
(3) Disney, M. D.; Hook, D. F.; Namoto, K.; Seeberger, P. H.;
Seebach, D. Chem. Biodiversity 2005, 2, 1624.
(4) Review: Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206.
D
dx.doi.org/10.1021/ja305491t | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX