across lipid membranes.16 Further dramatic improvement was
observed when dimethyl side chains (R2 and R3) were changed
to more lipophilic groups, diethyl (4g) and methyl isobutyl
unit (4h). The binding affinities of chloro substituents 4f–4h
are essentially identical, and therefore the large enhancement
of the transport activity of 4g and 4h is possibly attributed to
the increased lipophilicity and mobility; that is, longer alkyl
chains such as isobutyl may wrap around chloride ion more
completely, thus facilitating the diffusion of the complex in the
lipid membrane.17
5 (a) V. Sidorov, F. W. Kotch, G. Abdrakhmanova, R. Mizani,
J. C. Fettinger and J. T. Davis, J. Am. Chem. Soc., 2002, 124, 2267;
(b) V. Gortaeu, G. Bollot, J. Mareda, A. Perez-Velasco and
S. Matile, J. Am. Chem. Soc., 2006, 128, 14788; (c) V. Sidorov,
F. W. Kotch, J. L. Kuebler, Y.-F. Lam and J. T. Davis, J. Am.
Chem. Soc., 2003, 125, 2840; (d) J. T. Davis, Nat. Chem., 2010,
2, 516.
6 (a) G. Deng, T. Dewa and S. L. Regen, J. Am. Chem. Soc., 1996,
188, 8975; (b) A. V. Koulov, T. N. Lambert, R. Shukla, M. Jain,
J. M. Boon, B. D. Smith, H. Li, D. N. Sheppard, J.-B. Joos,
J. P. Clare and A. P. Davis, Angew. Chem., Int. Ed., 2003, 42, 4931;
(c) B. A. McNally, A. V. Koulov, T. N. Lambert, B. D. Smith,
J.-B. Joos, G. Magro and A. P. Davis, Chem.–Eur. J., 2008,
14, 9599.
7 (a) N. Madhavan, E. C. Robert and M. S. Gin, Angew. Chem.,
Int. Ed., 2005, 44, 7584; (b) S. Licen, C. Coppola, J. D’Onofrio,
D. Montesarchio and P. Tecilla, Org. Biomol. Chem., 2009, 7, 1060;
(c) K. Hagiwara, Y. Sei, M. Akita and M. Yoshizawa, Chem.
Commun., 2012, 48, 7678.
8 (a) J. L. Sessler, L. R. Eller, W.-S. Cho, S. Nicolau, A. Aguilar,
J. T. Lee, V. M. Lynch and D. J. Magda, Angew. Chem., Int. Ed.,
2005, 44, 5989; (b) P. A. Gale, Chem. Commun., 2005, 3761;
(c) C. C. Tong, R. Quesada, J. L. Sessler and P. A. Gale, Chem.
Commun., 2008, 6321; (d) R. I. S. Diaz, J. Regourd,
P. V. Santacroce, J. T. Davis, D. L. Jakeman and A. Rhompson,
Chem. Commun., 2007, 2701.
9 (a) M. Wenzel, M. E. Light, A. P. Davis and P. A. Gale, Chem.
Commun., 2011, 47, 7641; (b) X. Li, B. Shen, X.-Q. Yao and
D. Yang, J. Am. Chem. Soc., 2007, 129, 7264; (c) B. A. McNally,
E. J. O’Neil, A. Nguyen and B. D. Smith, J. Am. Chem. Soc.,
2008, 130, 17274; (d) T. M. Fyles and H. Luong, Org. Biomol.
Chem., 2009, 7, 733; (e) W. Wang, R. Li and G. W. Gokel,
Chem.–Eur. J., 2009, 15, 10543; (f) S. K. Berezin and J. T. Davis,
J. Am. Chem. Soc., 2009, 131, 2458; (g) W. A. Harrell, Jr.,
M. L. Bergmeyer, P. Y. Zavalij and J. T. Davis, Chem. Commun.,
2010, 46, 3950; (h) N. J. Andrews, C. J. E. Haynes, M. E. Light,
S. J. Moore, C. C. Tong, J. T. Davis, W. A. Harrell, Jr. and
P. A. Gale, Chem. Sci., 2011, 2, 256; (i) S. Bahmanjah, N. Zhang
and J. T. Davis, Chem. Commun., 2012, 48, 4432; (j) C. Chhun and
A. R. Schmitzer, Med. Chem. Commun., 2011, 2, 987;
(k) C. J. E. Haynes, S. J. Moore, J. R. Hiscock, I. Marques,
P. J. Costa, V. Felix and P. A. Gale, Chem. Sci., 2012, 3,
1436; (l) J. T. Davis, P. A. Gale, O. A. Okunola, P. Prados,
J. C. Iglesias-Sanchez, T. Torroba and R. Quesada, Nat. Chem.,
2009, 1, 138.
To reveal the transport mechanism, the transport experi-
ment was also carried out under identical conditions except
using vesicles loaded with Na2SO4, instead of NaNO3. Even
compound 4h showed no activity of transporting chloride ion
into the vesicles containing Na2SO4 (EÀSIw, Fig. S10), implying
that the transport occurs by ClÀ/NO3 exchange mechanism.
In addition, no difference in the transport rate was found when
potassium chloride was used instead of sodium chloride (see
ESIw, Fig. S11), indicative of an antiport mechanism. Finally,
the transport rate of chloride ion was found to be linearly
proportional to the concentration of 4h (see ESIw, Fig. S12
and S13), suggesting that 4h function as a molecular carrier for
chloride ion, not forming a channel.
In conclusion, we have demonstrated that the chloride
transport across a lipid membrane can be drastically improved
by the systematic modification of synthetic receptors with the
bonding motif observed in a ClC chloride channel. In parti-
cular, the chloro substituent greatly enhances the efficiency of
the chloride transport, which can be further improved by the
incorporation of longer alkyl chains around the binding site
possibly due to the increased lipophilicity and mobility of the
chloride complex in the lipid membrane.
This work was supported by the National Research
Foundation of Korea (NRF) grand funded by the Korea
government (MEST) (2012-0004966). Y.R.C. acknowledges
the fellowship of the BK21 program from the Ministry of
Education and Human Resources Development. We thank
P. A. Gale (University of Southampton) for helpful comments
on the transport experiment.
10 R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait and
R. MacKinnon, Nature, 2002, 415, 287.
11 (a) W.-W. Sy, Synth. Commun., 1992, 22, 3215; (b) D. M. Lindsay,
W. Dohle, A. E. Jensen, F. Kopp and P. Knochel, Org. Lett., 2002,
4, 1819.
12 J. R. Hiscock, C. Caltagirone, M. E. Light, M. B. Hursthouse and
P. A. Gale, Org. Biomol. Chem., 2009, 7, 1781.
13 (a) K. Sonogashira, in Metal-Catalyzed Cross-Coupling Reactions,
ed. F. Diederigh and P. J. Stang, Wiley-VCH, Weinheim,
Germany, 1998, p. 203; (b) R. Chinchilla and C. Najera, Chem.
Rev., 2007, 107, 874.
14 (a) K. A. Connors, Binding Constants, John Wiley & Sons,
New York, 1987; (b) R. S. Macomber, J. Chem. Educ., 1992,
69, 375; (c) P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305.
15 B. A. McNally, A. V. Koulov, B. D. Smith, J. B. Joos and
A. P. Davis, Chem. Commun., 2005, 1087.
16 (a) N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernandez,
R. Perez-Tomas and P. A. Gale, J. Am. Chem. Soc., 2011,
133, 14136; (b) N. Busschaert, I. L. Kirby, S. Young, S. J. Coles,
P. N. Horton, M. E. Light and P. A. Gale, Angew. Chem., Int. Ed.,
2012, 51, 1; (c) S. J. Moore, M. Wenzel, M. E. Light, R. Morley,
S. J. Bradberry, P. Gomez-Iglesias, V. Soto-Cerrato, R. Perez-
Tomas and P. A. Gale, Chem. Sci., 2012, 3, 2501.
Notes and references
1 A. P. Davis, D. N. Sheppard and B. D. Smith, Chem. Soc. Rev.,
2007, 36, 348.
2 (a) D. N. Sheppard, D. P. Rich, L. S. Ostedgaard, R. J. Gregory,
A. E. Smith and M. J. Welsh, Nature, 1993, 362, 160;
(b) T. J. Jentsch, T. Maritzen and A. A. Zdebik, J. Clin. Invest.,
2005, 115, 2039.
3 (a) A. P. Davis, Coord. Chem. Rev., 2006, 250, 2939;
(b) B. A. McNally, W. M. Leevy and B. D. Smith, Supramol.
Chem., 2007, 19, 29; (c) J. T. Davis, O. A. Okunola and
R. Quesada, Chem. Soc. Rev., 2010, 39, 3843; (d) G. W. Gokel
and N. Barkey, New J. Chem., 2009, 33, 947; (e) S. Matile,
A. V. Jentzsch, J. Montenegro and A. Fin, Chem. Soc. Rev.,
2011, 40, 2453; (f) C. J. E. Haynes and P. A. Gale, Chem.
Commun., 2011, 47, 8203; (g) P. A. Gale, Acc. Chem. Res., 2011,
44, 216; (h) J. M. Boon and B. D. Smith, Curr. Opin. Chem. Biol.,
2002, 6, 749.
4 (a) P. H. Schlesinger, R. Ferdani, J. Liu, J. Pajewska, R. Pajewski,
M. Saito, H. Shabany and G. W. Gokel, J. Am. Chem. Soc., 2002,
124, 1848; (b) A. Hennig, L. Fischer, G. Guichard and S. Matile,
J. Am. Chem. Soc., 2009, 131, 16889; (c) T. Rezai, B. Yu,
G. L. Millhauser, M. P. Jacobson and R. S. Lokey, J. Am. Chem.
Soc., 2006, 128, 2510.
17 (a) L. W. Judd and A. P. Davis, Chem. Commun., 2010, 46, 2227;
(b) M. Yano, C. C. Tong, M. E. Light, F. P. Schmidtchen and
P. A. Gale, Org. Biomol. Chem., 2010, 8, 4356; (c) S. Hussain,
P. R. Brotherhood, L. W. Judd and A. P. Davis, J. Am. Chem.
Soc., 2011, 133, 1614; (d) V. Saggiomo, S. Otto, I. Marques,
V. Felix, T. Torroba and R. Quesada, Chem. Commun., 2012,
48, 5274.
c
10348 Chem. Commun., 2012, 48, 10346–10348
This journal is The Royal Society of Chemistry 2012