10.1002/adsc.201701081
Advanced Synthesis & Catalysis
Cortez, R. Sarpong, Org. Lett. 2010, 12, 1428. (j) J. S.
[13] S. P. Green, C. Jones, A. Stasch, R. P. Rose, New J.
Chem. 2007, 31, 127.
Yadav, B. V. S. Reddy, B. Padmavani, M. K. Gupta,
Tetrahedron Lett. 2004, 45, 7577. (k) J. S. Yadav, B. V.
S. Reddy, S. K. Biswas, S. Sengupta, Tetrahedron Lett.
2009, 50, 5798. (l) S. Pascual, C. Bour, P. de Mendoza,
A. M. Echavarren, Beilstein J. Org. Chem. 2011, 7,
1520.
[14] B. Qin, U. Schneider, J. Am. Chem. Soc. 2016, 138,
13119.
[15] (a) J. M. Slattery, A. Higelin, T. Bayer, I. Krossing,
Angew. Chem. Int. Ed. 2010, 49, 3228. (b) A. Higelin,
C. Haber, S. Meier, I. Krossing, Dalton Trans. 2012, 41,
12011. (c) A. Higelin, S. Keller, C. Göhringer, C. Jones,
I. Krossing, Angew. Chem. Int. Ed. 2013, 52, 4941. (d)
A. Higelin, U. Sachs, S. Keller, I. Krossing, Chem. Eur.
J. 2012, 18, 10029.
[3] For selected examples of the use of In(III) halides as π-
Lewis acids, see: (a) A. Fꢀrstner, V. Mamane, J. Org.
Chem. 2002, 67, 6264. (b) A. Fꢀrstner, V. Mamane,
Chem. Commun. 2003, 2112. (c) J. Augé, N. Lubin-
Germain, J. Uziel, Synthesis, 2007, 1739. (d) N. Sakai,
K. Annaka, A. Fujita, A. Sato, T. Konakahara, J. Org.
Chem. 2008, 73, 4160. (e) K. Surendra, W. Qiu, E. J.
Corey, J. Am. Chem. Soc. 2011, 133, 9724. (f) W-W.
Qiu, K. Surendra, E. J. Corey, Org. Lett. 2011, 13,
5893. (g) Y. Kwon, H. Cho, S. Kim, Org. Lett. 2013,
15, 920. (h) Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, Y.-H.
Xu, T.-P. Loh, Chem. Rev. 2013, 113, 27. (i) L.
Alonso-Marañón, M. Monserrat Martinez, L. A.
Saraneses, J. Pérez Sestelo, Org. Biomol. Chem. 2015,
13, 379.
[16] (a) M. C. Kuchta, J. B. Bonanno, G. Parkin, J. Am.
Chem. Soc. 1996, 118, 10914. (b) E. S. Schmidt, A.
Jockisch, H. Schmidbaur, J. Am. Chem. Soc. 1999, 121,
9758. (c) N. J. Hardman, P. P. Power, J. D. Gorden, C.
L. B. Macdonald, A. H. Cowley, Chem. Commun. 2001,
1866. (d) M. Asay, C. Jones, M. Driess, Chem. Rev.
2011, 111, 354 and references therein. (e) D. Dange, S.
L. Choong, C. Schenk, A. Stasch, C. Jones, Dalton
Trans. 2012, 41, 93.
[17] For examples see: (a) S. Kobayashi, H. Konishi, U.
Schneider, Chem. Commun. 2008, 2313. (b) U.
Schneider, H. T. Dao, S. Kobayashi, Org. Lett. 2010,
12, 2488. (c) U. Schneider, Y.-Y. Huang, A.
Chakrabarti, H. T. Dao, N. Morita, S. Kobayashi, Pure.
Appl. Chem. 2012, 84, 2417.
[4] V. Michelet, P. Y. Toullec, J.-P. Genꢁt, Angew. Chem.
Int. Ed. 2008, 47, 4268.
[5] C. Bour, V. Gandon, Coord. Chem. Rev. 2014, 279, 43.
[6] (a) S. Tang, J. Monot, A. El-Hellani, B. Michelet, R.
Guillot, C. Bour, V. Gandon, Chem. Eur. J. 2012, 18,
10239. (b) A. El-Hellani, J. Monot, S. Tang, R. Guillot,
C. Bour, V. Gandon, Inorg. Chem. 2013, 52, 11493. (c)
A. El-Hellani, J. Monot, R. Guillot, C. Bour, V.
Gandon, Inorg. Chem. 2013, 52, 506. (d) C. Bour, J.
Monot, S. Tang, R. Guillot, J. Farjon, V. Gandon,
Organometallics, 2014, 33, 594. (e) B. Michelet, G.
Thiery, C. Bour, V. Gandon, J. Org. Chem. 2015, 80,
10985. (f) C. Bour, V. Gandon, Synlett Account 2015,
26, 1427. (g) B. Michelet, S. Tang, G. Thiery, J. Monot,
H. Li, R. Guillot, C. Bour, V. Gandon, Org. Chem.
Front. 2016, 3, 1603.
[18] (a) M. R. Lichtenthaler, A. Higelin, A. Kraft, S.
Hughes, A. Steffani, D. A. Plattner, J. M. Slattery, I.
Krossing, Organometallics 2013, 32, 6725. (b) M. R.
Lichtenthaler, S. Maurer, R. J. Mangan, F. Stahl, F.
Mönkemeyer, J. Hamann, I. Krossing, Chem. Eur. J.
2015, 21, 157.
[19] (a) I. Krossing, I. Raabe, Chem. Eur. J. 2004, 10,
5017. (b) I. Krossing, A. Reisinger, Coord. Chem. Rev.
2006, 250, 2721.
[20] CCDC-1567727.
[21] In the solid state, the composition of “GaI” can be
[7] B. Michelet, J.-R. Colard-Itté, G. Thiery, R. Guillot, C.
[Ga(0)]2[Ga(I)]+[Ga(III)I4]-
or
Bour, V. Gandon, Chem. Commun. 2015, 51, 7401.
+
[Ga(0)]2[Ga(I)]2 [Ga(III)2I6]2- see: B. J. Malbrecht, J.
W. Dube, M. J. Willians, P. J. Ragogna, Inorg. Chem.
2014, 53, 9644.
[8] C. Ferrer, A. M. Echavarren, Angew. Chem. Int. Ed.
2006, 45, 1105.
[9] For selected examples of the use of In(I) halides for
[22] In the solid state, the composition of Ga2Cl4 is
[Ga(I)]+[Ga(III)Cl4]-, see: R. A. Novikov, K. V.
Potapov, D. N. Chistikov, A. V. Tarasova, M. S.
Grigoriev, V. P. Timofeev, Y. V. Tomilov,
Organometallics 2015, 34, 4238.
(asymmetric)
allylation,
allenylation
and
propargylation, see: (a) U. Schneider, S. Kobayashi,
Angew. Chem. Int. Ed. 2007, 46, 5909. (b) A.
Chakrabarti, H. Konishi, M. Yamaguchi, U. Schneider,
S. Kobayashi, Angew. Chem. Int. Ed. 2010, 49, 1838.
(c) Y.-Y. Huang, A. Chakrabarti, N. Morita, U.
Schneider, S. Kobayashi, Angew. Chem. Int. Ed. 2011,
50, 11121. (d) U. Schneider, S. Kobayashi, Acc. Chem.
Res. 2012, 45, 1331 and the references therein.
[23] With 10 mol% of GaCl3, 3a becomes the major
product (88%).
[24] Transfer hydrogenation represents a practical strategy
for performing challenging bond formations by
avoiding the handling of hazardous reagents; for a
review see: D. Wang, D. Astruc, Chem. Rev. 2015, 115,
6621 and references therein.
[10] S. Araki, H. Ito, N. Katsumara, Y. Butsugan, J. Org.
Chem. 1989, 369, 291.
[11] B. C. Ranu, A. Das, Tetrahedron Lett. 2004, 45, 6875.
[25] (a) B. Michelet, C. Bour, V. Gandon, Chem. Eur. J.
2014, 20, 14488. (b) I. Chatterjee, M. Oestreich, Angew.
Chem. Int. Ed. 2015, 54, 1965. (c) I. Chatterjee, Z.-W.
[12] B. C. Ranu, T. Mandal, Tetrahedron Lett. 2006, 47,
2859.
5
This article is protected by copyright. All rights reserved.