Job/Unit: O20464
/KAP1
Date: 05-06-12 15:33:46
Pages: 6
E. Fernández-Mateos, B. Maciá, M. Yus
SHORT COMMUNICATION
[2]
a) M. R. Luderer, W. F. Bailey, M. R. Luderer, J. D. Fair, R. J.
Dancer, M. B. Sommer, Tetrahedron: Asymmetry 2009, 20,
981–998; b) G. Wu, M. Huang, Chem. Rev. 2006, 106, 2596–
2616; c) G. G. Wu, M. Huang, Top. Organomet. Chem. 2004,
6, 1–35; d) D. M. Hodgson, Organolithiums in Enantioselective
Chemistry, Springer, Berlin, 2003.
a) T. K. Beng, R. E. Gawley, J. Am. Chem. Soc. 2010, 132,
12216–12217; b) J. L. Bilke, S. P. Moore, P. O’Brien, J. Gilday,
Org. Lett. 2009, 11, 1935–1938.
a) A. Alexakis, F. Amiot, Tetrahedron: Asymmetry 2002, 13,
2117–2122; b) S. E. Denmark, O. J.-C. Nicaise, Chem. Com-
mun. 1996, 999–1004; c) S. E. Denmark, N. Nakajima, O. J.-C.
Nicaise, J. Am. Chem. Soc. 1994, 116, 8798–8798; d) I. Inoue,
I. Mitsuru, S. Kenji, K. Koga, K. Tomioka, Tetrahedron 1994,
50, 4429–4438; e) K. Tomioka, I. Inoue, I. Mitsuru, S. Kenji,
K. Koga, Tetrahedron Lett. 1991, 32, 3095–3098.
a) M. Fañanás-Mastral, M. Pérez, P. H. Bos, A. Rudolph, S. R.
Harutyunyan, B. L. Feringa, Angew. Chem. 2012, 124, 1958–
1961; Angew. Chem. Int. Ed. 2012, 51, 1922–1925; b) M. Pérez,
M. Fañanás-Mastral, P. H. Bos, A. Rudolph, S. R. Harutyun-
yan, B. L. Feringa, Nature Chem. 2011, 3, 377–381; c) F. Gao,
Y. Lee, K. Mandai, A. H. Hoveyda, Angew. Chem. 2010, 122,
8548; Angew. Chem. Int. Ed. 2010, 49, 8370–8374; d) K.
Tanaka, J. Matsuui, H. Suzuki, J. Chem. Soc. Perkin Trans. 1
1993, 153–157.
the reaction of 4-formylphenyl methyl carbonate (Table 5,
Entry 8). Interestingly, the use of the sp2-hybridized phen-
yllithium reagent (PhLi) provided very good yield but low
and moderate enantioselectivities in the addition to
2-naphthaldehyde and cyclohexanecarbaldehyde, respec-
tively (Table 5, Entries 9 and 10). A limitation of this meth-
odology is highlighted by the reaction of bulky iBuLi with
benzaldehyde (1a), which gave 40% conversion into the re-
duction product fenilmethanol, and corresponding alcohol
2 was formed in 8% yield with 62%ee.
[3]
[4]
Conclusions
[5]
In conclusion, we have developed the first efficient enan-
tioselective catalytic system for the addition of alkyllithium
reagents to aromatic aldehydes by using an excess amount
of titanium tetraisopropoxide. This methodology allows the
preparation of highly valuable optically active alcohols
from economical and commercially available lithium rea-
gents. Reactions are performed in a simple and fast one-pot
procedure and no salt exclusion is needed. Moreover, the
potential problems associated with the high reactivity of
organolithium compounds are overcome under these reac-
tion conditions, as this methodology proves to be compati-
ble with functionalized substrates. Currently, efforts are di-
rected towards the elucidation of the reaction mechanism.
[6]
[7]
K. Tanaka, K. Kukita, T. Ichibakase, S. Kotanib, M. Naka-
jima, Chem. Commun. 2011, 47, 5614–5616.
a) M. Hatano, T. Miyamoto, K. Ishihara, Curr. Org. Chem.
2007, 11, 127–157; b) H. J. Zhu, J. X. Jiang, J. Ren, Y. M. Yan,
C. U. Pittman, Curr. Org. Synth. 2005, 2, 547–587; c) R.
Noyori, M. Kitamura, Angew. Chem. 1991, 103, 34–55; Angew.
Chem. Int. Ed. Engl. 1991, 30, 49–69; d) F. R. Hartley, S. Patai,
Carbon–Carbon Bond Formation Using Organometallic Com-
pounds, Wiley, New York, 1985.
[8]
[9]
R. Noyori, Asymmetric Catalysis in Organic Synthesis Wiley,
New York, 1994.
a) C. M. Binder, B. Singaram, Org. Prep. Proced. Int. 2011, 43,
139–208; b) A. Lemiere, A. Côté, M. K. Janes, A. B. Charette,
Aldrichim. Acta 2009, 42, 71–83; c) M. Yus, D. J. Ramón, Re-
cent Res. Dev. Org. Chem. 2002, 6, 297–378; d) L. Pu, H.-B.
Yu, Chem. Rev. 2001, 101, 757–824.
a) A. V. R. Madduri, S. R. Harutyunyan, A. J. Minnaard, An-
gew. Chem. 2012, 124, 3218–3221; Angew. Chem. Int. Ed. 2012,
51, 3164–3167; b) A. V. R. Madduri, A. J. Minnaard, S. R.
Harutyunyan, Chem. Commun. 2012, 48, 1478–1480; c) E.
Fernández-Mateos, B. Maciá, D. J. Ramón, M. Yus, Eur. J.
Org. Chem. 2011, 6851–6855; d) D. Itakura, T. Harada, Synlett
2011, 2875–2879; e) Y. Liu, C.-S. Da, S.-L. Yu, X.-G. Yin, J.-
R. Wang, X.-Y. Fan, W.-P. Li, R. Wang, J. Org. Chem. 2010,
75, 6869–6878; f) X.-Y. Fan, Y.-X. Yang, F.-F. Zhuo, S.-L. Yu,
X. Li, Q.-P. Guo, Z.-X. Du, C.-S. Da, Chem. Eur. J. 2010, 16,
7988–7991; g) C.-S. Da, J.-R. Wang, X.-G. Yin, X.-Y. Fan, Y.
Liu, S.-L. Yu, Org. Lett. 2009, 11, 5578–5581; h) Y. Muram-
atsu, T. Harada, Angew. Chem. 2008, 120, 1104; Angew. Chem.
Int. Ed. 2008, 47, 1088–1090; i) Y. Muramatsu, T. Harada,
Chem. Eur. J. 2008, 14, 10560–10563.
Experimental Section
General Procedure for the Synthesis of Chiral Alcohols: In a flame-
dried Schlenk tube, (Sa,R)-L1 (22.6 mg, 0.06 mmol) was dissolved
in toluene (2.5 mL) and Ti(iPrO)4 (550 μL, 6 equiv., 1.8 mmol) was
added to the solution at –40 °C. After 5 min, RLi (3.2 equiv.,
0.96 mmol) was added followed by rapid addition of the aldehyde
(0.3 mmol). The reaction mixture was stirred at –40 °C for 1 h and
then quenched with H2O (2 mL) and 2 m HCl (2 mL). The crude
product was extracted with EtOAc (3ϫ5 mL), and the combined
organic layer was neutralized with aq. sat. NaHCO3, dried with
MgSO4, and concentrated in vacuo. The crude product was puri-
fied by chromatography on silica gel to give desired alcohol 2.
[10]
Supporting Information (see footnote on the first page of this arti-
cle): General procedures, characterization data, H NMR and 13C
1
NMR spectra, GC and HPLC chromatograms.
Acknowledgments
[11]
[12]
[13]
See, for example: B. Weber, D. Seebach, Tetrahedron 1994, 50,
The authors acknowledge financial support from the Spanish Min-
istry of Science and Technology (Projects CTQ2007-65218/BQU
and CTQ2011-24151), Consolider Ingenio 2010 (CSD2007-00006),
and Generalitat Valenciana (G.V. PROMETEO/2009/039 and
FEDER). Medalchemy and Chemetall are thanked for a gift of
chemicals. E. Fernández-Mateos thanks the Spanish Ministry of
Education for a predoctoral fellowship. G.P. Howell is thanked for
helpful comments on the manuscript.
7473–7484.
L. Salvi, J. G. Kim, P. J. Walsh, J. Am. Chem. Soc. 2009, 131,
12483–12493.
a) D. Catel, F. Chevallier, F. Mongin, P. C. Gros, Eur. J. Org.
Chem. 2012, 53–57; b) Y. Nakagawa, Y. Muramatsu, T. Har-
ada, Eur. J. Org. Chem. 2010, 6535–6538.
B. Lecachey, C. Fressigné, H. Oulyadi, A. Harrison-Marchand,
J. Maddaluno, Chem. Commun. 2011, 47, 9915–9917.
a) G. Gao, X.-F. Bai, H.-M. Yang, J.-X. Jiang, G.-Q. Lai, L.-
W. Xu, Eur. J. Org. Chem. 2011, 5039–5046; b) G. Gao, F.-L.
Gu, J.-X. Jiang, K. Jiang, C.-Q. Sheng, G.-Q. Lai, L.-W. Xu,
Chem. Eur. J. 2011, 17, 2698–2703; c) S.-I. Kiyooka, T. Tsutsui,
T. Kira, Tetrahedron Lett. 1996, 37, 8903–8904.
[14]
[15]
[1] a) Z. Rappoport, I. Marek, The Chemistry of Organolithium
Compounds, Wiley-VCH, 2004; b) C. Nájera, M. Yus, Curr.
Org. Chem. 2003, 7, 867–926.
4
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0