REPORTS
22. M. Rueda-Becerril et al., J. Am. Chem. Soc. 134, 4026
A
B
(2012).
23. F. Yin, Z. Wang, Z. Li, C. Li, J. Am. Chem. Soc. 134,
H
10401 (2012).
2.48 Å
1.79 Å
24. W. Liu, J. T. Groves, J. Am. Chem. Soc. 132, 12847 (2010).
25. M. L. Matthews et al., Proc. Natl. Acad. Sci. U.S.A. 106,
17723 (2009).
178o
H
6.5
3.1
26. The excess of iodosylbenzene typically used in
metalloporphyrin oxidations is due to the competing
disproportionation of this reagent, which produces
unreactive iodoxybenzene. The requirement for excess
fluoride ion appears to derive from the stoichiometry
of the fluorination reaction, which also produces
hydroxide ions. AgF converts Mn-OH to Mn-F species
and Ag2O.
1.77 Å
27. The need for both AgF and tetrabutyammonium
fluoride apparently derives from the limited solubility
of AgF in the reaction medium and the need for a
higher fluoride ion concentration than can be maintained
by AgF alone. The UV-visible lmax observed for
(TMP)MnIII-Cl (1) (475 nm) changed immediately to
that of a mixture of (TMP)MnIII-F (453 nm) and
[(TMP)MnIII(F)2]– (440 nm) under the reaction conditions.
28. The high selectivity for monofluorination, the low
reactivity of C-H bonds near carbonyl groups, and the
limited reactivity of the solvents as well as the
tetrabutylammonium ion seem to reflect a very strong
polar effect in the C-H bond cleavage step in this
reaction.
Fig. 3. Energy landscape for F rebound to the
cyclohexyl radical. (A) Schematic depiction of F
atom abstraction from X-MnIV-F by the cyclohexyl
radical in the equatorial configuration and the
influence of the axial ligand (X = OH and F) on the
F abstraction potential energy surface (enthalpies
H
-36.2
-43.4
in kilocalories per mole at 298 K). Bond distances shown are calculated for X = F. (B) Frontier orbital
depiction of the transition state (TS) for F transfer.
29. N. Jin, M. Ibrahim, T. G. Spiro, J. T. Groves, J. Am. Chem.
Soc. 129, 12416 (2007).
30. T. Newhouse, P. S. Baran, Angew. Chem. Int. Ed. 50,
3362 (2011).
We found that F atom transfer from Mn(THP)F2 is fluoride ion, we anticipate the potential ap-
to a cyclohexyl radical in the equatorial config- plication of these techniques to the incorpora-
uration was predicted to occur with a surprisingly tion of 18F into a wide variety of biomolecules
low activation barrier of only 3 kcal/mol (Fig. 3), and synthetic building blocks. Moreover, the
which is very similar to the O rebound barrier for isolation, structural characterization, and reac-
hydroxylation reactions catalyzed by oxomanga- tivity of the trans-difluoromanganese(IV) por-
nese porphyrins. A slightly higher transition state phyrin, MnIV(TMP)F2, suggest the existence of
was located for the delivery of F to a cyclohexyl a rich chemistry of such transition-metal fluorides
radical in an axial configuration (4.2 kcal/mol). for the delivery of F substituents.
Further, the calculated barrier for F transfer was
31. K. Chen, A. Eschenmoser, P. S. Baran, Angew. Chem.
Int. Ed. 48, 9705 (2009).
32. M. S. Chen, M. C. White, Science 327, 566 (2010).
33. J. P. Bégué, D. Bonnet-Delpon, J. Fluor. Chem. 127, 992
(2006).
34. N. Houstis, E. D. Rosen, E. S. Lander, Nature 440, 944
(2006).
35. R. I. Scheinman, P. C. Cogswell, A. K. Lofquist,
A. S. Baldwin Jr., Science 270, 283 (1995).
36. P. B. Zanzonico et al., J. Nucl. Med. 45, 1966 (2004).
37. L. F. Lourie et al., J. Fluor. Chem. 127, 377 (2006).
38. I. Schlichting et al., Science 287, 1615 (2000).
39. J. T. Groves, M. K. Stern, J. Am. Chem. Soc. 110, 8628
(1988).
~3 kcal/mol lower for the trans-difluoroMnIV
References and Notes
species (Fig. 3, X = F) than for the analogous
hydroxy-fluoride (Fig. 3, X = OH), implicating a
much faster reaction rate for the difluoride. Con-
1. J. C. Lewis, P. S. Coelho, F. H. Arnold, Chem. Soc. Rev.
40, 2003 (2011).
40. T. P. Umile, D. Wang, J. T. Groves, Inorg. Chem. 50,
2. J. T. Groves, J. Inorg. Biochem. 100, 434 (2006).
10353 (2011).
3. A. S. Eustáquio, D. O’Hagan, B. S. Moore, J. Nat. Prod.
73, 378 (2010).
sistent with this low barrier for F transfer, the
transition state is very early in the reaction trajec-
tory, showing an exceedingly long C-F distance of
2.48 Å and a Mn-F distance that is only very slightly
elongated from the starting manganese(IV) di-
fluoride (TS in Fig. 3 and fig. S31). The visible
spectrum of the reaction mixture was complex,
apparently due to the presence of several forms of
the catalyst during turnover. However, the good
yield of 1-fluoroethylbenzene from the generation
of phenethyl radical in the presence of Mn(TMP)F2
provides experimental support for these computa-
tional predictions that manganese(IV) fluorides
of this type are excellent radical fluorinating
agents.
We are encouraged by the promising initial
results described here for the selective fluorina-
tion of simple hydrocarbons, substituted cyclic
molecules, terpenoids, and steroid derivatives.
The yields are sufficiently high and the tech-
niques sufficiently simple that the reaction can be
performed without specialized apparatus or com-
plicated precautions, other than the normal care
that should be taken whenever strong oxidants or
fluoride-containing reagents are used. Given that
the source of F in this one-step, one-pot protocol
41. N. Jin, D. E. Lahaye, J. T. Groves, Inorg. Chem. 49, 11516
(2010).
4. D. O’Hagan, C. Schaffrath, S. L. Cobb, J. T. G. Hamilton,
C. D. Murphy, Nature 416, 279 (2002).
42. K. Auclair, Z. B. Hu, D. M. Little, P. R. Ortiz De Montellano,
J. T. Groves, J. Am. Chem. Soc. 124, 6020 (2002).
43. L. Kaustov, M. E. Tal, A. I. Shames, Z. Gross, Inorg. Chem.
36, 3503 (1997).
5. K. Müller, C. Faeh, F. Diederich, Science 317, 1881 (2007).
6. D. A. Harki, N. Satyamurthy, D. B. Stout, M. E. Phelps,
P. B. Dervan, Proc. Natl. Acad. Sci. U.S.A. 105, 13039
(2008).
44. S. Kaskel, J. Strähle, Z. Anorg. Allg. Chem. 623, 1259 (1997).
7. S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev.
Acknowledgments: We are grateful to NSF (grants
CHE-0616633 and CHE-1148597 to J.T.G.) for support of
this research. DFT calculations, hydrocarbon C-H activation,
and the CalTech-Princeton collaboration were supported
by the Center for Catalytic Hydrocarbon Functionalization,
an Energy Frontier Research Center, U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under
award no. DE-SC0001298 to W.A.G. and J.T.G. A patent
application has been filed through Princeton University on
methods and catalysts presented in this paper. We thank
S. Semproni for assistance with the x-ray crystal structure of
MnIV(TMP)F2, data for which are available free of charge
from the Cambridge Crystallographic Data Centre under
reference no. CCDC 893742.
108, 1501 (2008).
8. T. Furuya, A. S. Kamlet, T. Ritter, Nature 473, 470 (2011).
9. P. P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 132,
12150 (2010).
10. D. A. Watson et al., Science 325, 1661 (2009).
11. E. Lee et al., Science 334, 639 (2011).
12. P. Herrmann, J. Kvicala, V. Pouzar, H. Chodounska,
Collect. Czech. Chem. Commun. 73, 1825 (2008).
13. S. Rozen, C. Gal, J. Org. Chem. 52, 2769 (1987).
14. S. Stavber, M. Zupan, Tetrahedron 45, 2737 (1989).
15. S. Rozen, Eur. J. Org. Chem. 2005, 2433 (2005).
16. G. Sandford, J. Fluor. Chem. 128, 90 (2007).
17. R. D. Chambers, A. M. Kenwright, M. Parsons,
G. Sandford, J. S. Moilliet, J. Chem. Soc. Perkin Trans. 1,
2190 (2002).
Supplementary Materials
Materials and Methods
Figs. S1 to S31
Tables S1 to S6
18. K. L. Hull, W. Q. Anani, M. S. Sanford, J. Am. Chem. Soc.
128, 7134 (2006).
19. Y. J. Zhao, Y. H. Pan, S. B. D. Sim, C. H. Tan,
Org. Biomol. Chem. 10, 479 (2012).
20. J. A. Kalow, A. G. Doyle, J. Am. Chem. Soc. 132, 3268
References (45–58)
(2010).
21. A. Rentmeister, F. H. Arnold, R. Fasan, Nat. Chem. Biol.
5, 26 (2009).
23 March 2012; accepted 26 July 2012
10.1126/science.1222327
1325