6194
L. Liu et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6190–6194
3. (a) Murphy, P. V.; Bradley, H.; Tosin, M.; Pitt, N.; Fitzpatrick, G. M.; Glass, W. K.
J. Org. Chem. 2003, 68, 5692; (b) Bradley, H.; Fitzpatrick, G.; Glass, W. K.; Kunz,
H.; Murphy, P. V. Org. Lett. 2001, 3, 2629; (c) Park, W. K. C.; Auer, M.; Jaksche,
H.; Wong, C.-H. J. Am. Chem. Soc. 1996, 118, 10150; (d) Sutherlin, D. P.; Stark, T.
M.; Hughes, R.; Armstrong, R. W. J. Org. Chem. 1996, 61, 8350; (e) Lockhoff, O.;
Frappa, I. Comb. Chem. High Throughput Screening 2002, 5, 361; (f) Lockhoff, O.
Angew. Chem., Int. Ed. 1998, 37, 3436; (g) Bedjeguelal, K.; Bienayme, H.;
Dumoulin, A.; Poigny, S.; Schmitt, P.; Tam, E. Bioorg. Med. Chem. Lett. 2006, 16,
3998; (h) ChapmanTimothy, M.; DaviesIeuan, G.; Gu, B.; BlockTimothy, M.;
ScopesDavid, I. C.; HayPhilip, A.; CourtneyStephen, M.; McNeillLuke, A.;
SchofieldChristopher, J.; DavisBenjamin, G. J. Am. Chem. Soc. 2005, 127, 506;
(i) Chapman, T. M.; Davies, I. G.; Gu, B.; Block, T. M.; Scopes, D. I. C.; Hay, P. A.;
Courtney, S. M.; McNeill, L. A.; Schofield, C. J.; Davis, B. G. J. Am. Chem. Soc. 2005,
127, 506.
4. Liu, L.; Li, C. P.; Cochran, S.; Ferro, V. Bioorg. Med. Chem. Lett. 2004, 14, 2221.
5. Zhang, J.; Rivers, G.; Zhu, Y.; Jacobson, A.; Peyers, J.; Grundstrom, G.; Burch, P.;
Hussein, S.; Marolewski, A.; Herlihy, W.; Rusche, J. Bioorg. Med. Chem. 2001, 9,
825.
6. For reviews see (a) Bikfalvi, A. Bull. Cancer 2007, 94, F193; (b) Conrad, H. E.
Heparin-binding Proteins; Academic Press: San Diego, 1998; (c) Galzie, Z.;
Kinsella, A. R.; Smith, J. A. Biochem. Cell Biol. 1997, 75, 669.
7. For reviews see (a) Rusnati, M.; Presta, M. Curr. Pharm. Des. 2007, 13, 2025; (b)
Pluda, J. M. Semin. Oncol. 1997, 24, 203; (c) Kessler, T.; Fehrmann, F.; Bieker, R.;
Berdel, W. E.; Mesters, R. M. Curr. Drug Targets 2007, 8, 257; (d) Ellis, L. M.;
Hicklin, D. J. Nat. Rev. Cancer 2008, 8, 579.
8. (a) DiGabriele, A. D.; Lax, I.; Chen, D. I.; Svahn, C. M.; Jaye, M.; Schlessinger, J.;
Hendrickson, W. A. Nature 1998, 393, 812; (b) Faham, S.; Hileman, R. E.; Fromm,
J. R.; Linhardt, R. J.; Rees, D. C. Science 1996, 271, 1116.
9. (a) Pellegrini, L.; Burke, D. F.; von Delft, F.; Mulloy, B.; Blundell, T. L. Nature
2000, 407, 1029; (b) Schlessinger, J.; Plotnikov, A. N.; Ibrahimi, O. A.;
Eliseenkova, A. V.; Yeh, B. K.; Yayon, A.; Linhardt, R. J.; Mohammadi, M. Mol.
Cell 2000, 6, 743.
10. (a) Cochran, S.; Li, C.; Fairweather, J. K.; Kett, W. C.; Coombe, D. R.; Ferro, V. J.
Med. Chem. 2003, 46, 4601; (b) Johnstone, K. D.; Karoli, T.; Liu, L.; Dredge, K.;
Copeman, E.; Li, C. P.; Davis, K.; Hammond, E.; Bytheway, I.; Kostewicz, E.; Chiu,
F. C.; Shackleford, D. M.; Charman, S. A.; Charman, W. N.; Harenberg, J.; Gonda,
T. J.; Ferro, V. J. Med. Chem. 2010, 53, 1686; (c) Liu, L.; Bytheway, I.; Karoli, T.;
Fairweather, J. K.; Cochran, S.; Li, C.; Ferro, V. Bioorg. Med. Chem. Lett. 2008, 18,
344; (d) Ferro, V.; Dredge, K.; Liu, L.; Hammond, E.; Bytheway, I.; Li, C.;
Johnstone, K.; Karoli, T.; Davis, K.; Copeman, E.; Gautam, A. Semin. Thromb.
Hemost. 2007, 33, 557; (e) Freeman, C.; Liu, L. G.; Banwell, M. G.; Brown, K. J.;
Bezos, A.; Ferro, V.; Parish, C. R. J. Biol. Chem. 2005, 280, 8842; (f) Liu, L.; Li, C.;
Cochran, S.; Jimmink, S.; Ferro, V. ChemMedChem 2012, 7, 1267; (g) Ferro, V.;
Liu, L.; Johnstone, K. D.; Wimmer, N.; Karoli, T.; Handley, P.; Rowley, J.; Dredge,
K.; Li, C. P.; Hammond, E.; Davis, K.; Sarimaa, L.; Harenberg, J.; Bytheway, I. J.
Med. Chem. 2012, 55, 3804.
2.6 Å) with the nitrogen atoms in the backbone amide of residues
Ala 137 and Lys 136. The C2 and the C3 sulfates also interact with
the positively charged e-amino group of Lys 126 (2.7 Å), and the C3
sulfate group additionally forms a hydrogen bond with a nitrogen
atom (3.0 Å) in the side-chain amide of Asn 28. The side-chain gua-
nidino group of Arg 121 is wedged between the other two sulfate
groups (C4 and C6) forming ionic interactions (3.0–3.2 Å). The side
chain of 2Ca binds to FGF-2 through van der Waals interactions
with the side-chains of residues Lys 130 and Gln 135.
In conclusion, by harnessing the powerful Ugi four component
condensation, a library of HS mimetics was quickly assembled
and used to probe the binding environment of some angiogenic
HS-binding growth factors. The affinities measured for these
monosaccharide derivatives are close to those generally observed
for polysulfated di- to tetrasaccharides,10a,c especially those leads
bearing fewer charged groups. A clear trend for protein preference,
particularly an aromatic group for FGF-1 and VEGF, was observed.
These observations are generally in agreement with previous stud-
ies on modified heparin polysaccharides which showed that
increasing lipophilic modifications can improve affinity for VEGF
and FGF-1 but not FGF-2.17 Future studies should focus on optimiz-
ing the sulfation pattern around the monosaccharide motif as well
as investigating a combination of more than one hydrophobic
group to maximize non-ionic binding contributions with an expec-
tation to achieve higher affinity small molecule ligands.
Acknowledgements
We thank Drs. Tommy Karoli, Jon Fairweather, Ian Bytheway,
Robert Don and Edward Hammond for useful discussions.
Supplementary data
Supplementary data (copies of NMR spectra for intermediates
and final compounds. Experimental details and characterization
data for selected compounds) associated with this article can be
11. (a) Capila, I.; Linhardt, R. J. Angew. Chem., Int. Ed. 2002, 41, 390; (b) Harmer, N. J.
Biochem. Soc. Trans. 2006, 34, 442; (c) Biswas, C. Trends Glycosci. Glycotechnol.
1992, 4, 53.
12. Bernlind, C.; Oscarson, S.; Widmalm, G. Carbohydr. Res. 1994, 263, 173.
13. 1H and 13C NMR data for compound 9: 1H NMR (400 MHz, CDCl3, 7.27): 7.42-
7.29 (m, 15 H, 3 ꢁ Ph), 5.01, 4.61 (ABq, JAB = 11.2 Hz, PhCH2), 4.78, 4.72 (ABq,
JAB = 12.0, PhCH2), 4.77 (d, 1 H, J1,2 = 1.6, H1), 4.65, 4.63 (ABq, JAB = 11.6, PhCH2),
3.93 (dd, 1H, J3,4 = 9.2, J2,3 = 2.8, H3), 3.85 (dd, 1 H, J4,5 = 9.6, H4), 3.83 (dd, 1 H,
H2), 3.73 (ddd, 1H, J5,6a = 7.2, J5,6b = 2.0, H5), 3.69 (dd, 1 H, J6a,6b = 15.2, H6b),
3.55 (dd, 1 H, H6a), 3.37 (s, 3H, CH3O). 13C (100 MHz, CDCl3, 77.0): 157.57 (NC),
138.00, 137.94, 137.83, 128.47, 128.362, 128.355, 128.34, 127.98, 127.89,
127.72, 127.68, 127.65, 127.57, 98.99 (C1), 79.90, 75.17, 74.96, 74.15, 72.72,
71.89, 69.60, 54.93, 43.10.
References and notes
1. For recent reviews see (a) Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012,
112, 3083; (b) Colombo, M.; Peretto, I. Drug Discovery Today 2008, 13, 677; (c)
Ganem, B. Acc. Chem. Res. 2009, 42, 463; (d) Banfi, L.; Guanti, G.; Riva, R.; Basso,
A. Curr. Opin. Drug Discov. Devel. 2007, 10, 704.
2. (a) Akritopoulou-Zanze, I. Curr. Opin. Chem. Biol. 2008, 12, 324; (b) Hulme, C.;
Dietrich, J. Mol. Divers. 2009, 13, 195; (c) Dömling, A. Chem. Rev. 2006, 106, 17;
(d) Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (e) Dömling, A.
Curr. Opin. Chem. Biol. 2002, 6, 306; (f) Hulme, C.; Gore, V. Curr. Med. Chem.
2003, 10, 51; (g) Weber, L. Curr. Med. Chem. 2002, 9, 2085.
14. Cochran, S.; Li, C. P.; Ferro, V. Glycoconjugate J. 2009, 26, 577.
15. Bytheway, I.; Cochran, S. J. Med. Chem. 2004, 47, 1683.
16. Thomsen, R.; Christensen, M. H. J. Med. Chem. 2006, 49, 3315.
17. Huang, L.; Fernandez, C.; Kerns, R. J. Bioorg. Med. Chem. Lett. 2007, 17, 419.