Conformational Switching in Heterochiral α,β2,3-Hybrid Peptides
analogues based on trans-ACPC.[22] The idea of chirality
alternation has also been experimented by the Fülöp group
by using some selected cis- and trans-ACPC oligomers.
Among these, heterochiral cis-ACPC peptides were found
to assume a H10/12 helical structure. At the same time, the
heterochiral trans-ACPC oligomer existed as a polar
strand.[23] As mentioned before, we recently reported the
sequential unwinding of helical turns in peptides with
(α,β)nα composition through incremental changes in solvent
polarity/temperature.[9] The present work is in continuation
of our efforts in this direction and shows that heterochiral
sequences of this class of peptides are good candidates for
accessing partially folded conformations. The ability of
peptide 1 to exist in either a helical or extended state de-
pending on the chemical environment points towards the
potential use of such hybrid peptides in the design of stim-
uli-responsive materials.
Soc. 2012, 134, 7317; b) V. Azzarito, K. Long, N. S. Murphy,
A. J. Wilson, Nat. Chem. 2013, 5, 161; c) C. M. Goodman, S.
Choi, S. Shandler, W. F. DeGrado, Nat. Chem. Biol. 2007, 3,
252; d) M. Raj, B. N. Bullock, P. S. Arora, Bioorg. Med. Chem.
2013, 21, 4051.
T. A. Martinek, F. Fülöp, Chem. Soc. Rev. 2012, 41, 687.
G. Maayan, Eur. J. Org. Chem. 2009, 5699.
C. M. Haney, M. T. Loch, W. S. Horne, Chem. Commun. 2011,
47, 10915.
D. Seebach, M. Overhand, F. N. M. Kuehnle, B. Martinoni,
Helv. Chim. Acta 1996, 79, 913.
D. H. Appella, L. A. Christianson, I. L. Karle, D. R. Powell,
S. H. Gellman, J. Am. Chem. Soc. 1996, 118, 13071.
a) W. S. Horne, S. H. Gellman, Acc. Chem. Res. 2008, 41, 1399;
b) L. K. A. Pilsl, O. Reiser, Amino Acids 2011, 41, 709; c) G.
Guichard, I. Huc, Chem. Commun. 2011, 47, 5933.
D. Balamurugan, K. M. Muraleedharan, Chem. Eur. J. 2012,
18, 9516.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
D. Balamurugan, K. M. Muraleedharan, Chem. Eur. J. 2015,
21, 9332.
[10]
CCDC-906802 (for 1, grown from CHCl3) and -945946 (for 1,
grown from iPrOH) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Conclusions
The ability of proteins to shift from one specific confor-
mation to another in response to biological triggering
events is responsible for the high degree of regulation in
every cellular function. Simulation of such transitions by
using small oligomers is an extremely important subject ow-
ing to its direct application in the design of new functional
systems. Such studies are also of special significance, as they
can shine light onto the intricacies of protein folding.
Herein, we presented a group of α,β2,3-peptides with a het-
erochiral backbone; these peptides not only assume specific
conformations depending on the solvent but also respond
to a change in polarity by shifting from one conformation
to another. The helical and extended structural preferences
of tetrapeptide 1 in CDCl3 and [D6]DMSO, respectively,
was retained in its crystals grown from solvents of compar-
able polarities. Using a similar design strategy, we accessed
two hexapeptides capable of adopting a half helix–half
strand structure. Realization of a combination of two ex-
treme conformations in a segment as short as a hexapeptide
is remarkable and can be used as a model system to under-
stand the fine balance between enthalpic and entropic fac-
tors during conformation selection.
[11]
a) C. Dolain, V. Maurizot, I. Huc, Angew. Chem. Int. Ed. 2003,
42, 2738; Angew. Chem. 2003, 115, 2844; b) Y. Fukushima,
Bull. Chem. Soc. Jpn. 1996, 69, 701; c) D. Carrier, H. H.
Mantsch, P. T. T. Wong, Biopolymers 1990, 29, 837; d) M. Mut-
ter, R. Hersperger, Angew. Chem. Int. Ed. Engl. 1990, 29, 185;
Angew. Chem. 1990, 102, 195; e) S. K. Awasthi, S. C. Shankar-
amma, S. Raghothama, P. Balaram, Biopolymers 2001, 58, 465;
f) P. Pengo, L. Pasquato, S. Moro, A. Brigo, F. Fogolari, Q. B.
Broxterman, B. Kaptein, P. Scrimin, Angew. Chem. Int. Ed.
2003, 42, 3388; Angew. Chem. 2003, 115, 3510.
[12]
a) S. Zhang, A. Rich, Proc. Natl. Acad. Sci. USA 1997, 94, 23;
b) Y. Fukushima, Chem. Lett. 1999, 28, 157.
[13] G. P. Dado, S. H. Gellman, J. Am. Chem. Soc. 1993, 115,
12609.
[14] Y. Takahashi, T. Yamashita, A. Ueno, H. Mihara, Tetrahedron
2000, 56, 7011.
[15] X. Wang, I. Bergenfeld, P. S. Arora, J. W. Canary, Angew.
Chem. Int. Ed. 2012, 51, 12099; Angew. Chem. 2012, 124,
12265.
[16] S. Samanta, C. Qin, A. J. Lough, G. A. Woolley, Angew. Chem.
Int. Ed. 2012, 51, 6452; Angew. Chem. 2012, 124, 6558.
[17] A. Hetényi, I. M. Mándity, T. A. Martinek, G. K. Tóth, F.
Fülöp, J. Am. Chem. Soc. 2005, 127, 547.
[18] M. Crisma, M. Saviano, A. Moretto, Q. B. Broxterman, B.
Kaptein, C. Toniolo, J. Am. Chem. Soc. 2007, 129, 15471.
[19] Y. R. Nelli, S. Antunes, A. Salaün, E. Thinon, S. Massip, B.
Kauffmann, C. Douat, G. Guichard, Chem. Eur. J. 2015, 21,
2870.
[20] Y. R. Nelli, L. Fischer, G. W. Collie, B. Kauffmann, G. Guich-
ard, Biopolymers 2013, 100, 687.
[21] M. Kudo, V. Maurizot, H. Masu, A. Tanatani, I. Huc, Chem.
Commun. 2014, 50, 10090.
[22] T. A. Martinek, G. K. Tóth, E. Vass, M. Hollósi, F. Fülöp,
Angew. Chem. Int. Ed. 2002, 41, 1718; Angew. Chem. 2002, 114,
1794.
[23] T. A. Martinek, I. M. Mándity, L. Fülöp, G. K. Tóth, E. Vass,
M. Hollósi, E. Forró, F. Fülöp, J. Am. Chem. Soc. 2006, 128,
13539.
Acknowledgments
Financial support of this work by the Department of Science and
Technology (DST), New Delhi (grant number SR/S1/OC-13/2007),
and the Departmental instrumentation facility by DST (FIST) are
gratefully acknowledged. The authors thank Mr. V. Ramkumar,
Department of Chemistry for X-ray diffraction analysis. D. Bala-
murugan thanks DST and the Indian Institute of Technology Ma-
dras (IITM) for a research fellowship.
[1] a) L. M. Johnson, D. E. Mortenson, H. G. Yun, W. S. Horne,
Received: April 27, 2015
Published Online: July 20, 2015
T. J. Ketas, M. Lu, J. P. Moore, S. H. Gellman, J. Am. Chem.
Eur. J. Org. Chem. 2015, 5321–5325
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5325