ACS Medicinal Chemistry Letters
Letter
(8) For other examples, see Ghosh, P.; Zhang, Y.; Emge, T. J.;
Williams, L. J. Modeling a Macrocyclic bis[spirodiepoxide] strategy to
erythronolide A. Org. Lett. 2009, 11, 4402−4405.
(9) Liu, K.; Kim, H.; Ghosh, P.; Akhmedov, N. G.; Williams, L. J.
Direct entry to erythronolides via a cyclic bis[allene]. J. Am. Chem. Soc.
2011, 133, 14968−14971.
(10) For a contrasting and elegant approach to macrolide analogues
wherein the carbohydrate moiety has been modified while maintaining
the aglycone intact, see Borisova, S. A.; Guppi, S. R.; Kim, H. J.; Wu,
B.; Penn, J. H.; Liu, H.-W.; O'Doherty, G. A. A de novo approach to the
synthesis of glycosylated methymycin analogues with structural and
stereochemical diversity. Org. Lett. 2010, 12, 5150.
(11) Mankin, A. S. Macrolide myths. Curr. Opin. Microbiol. 2008, 11,
414−421 and references therein.
(12) Tu, D.; Blaha, G.; Moore, P. B.; Steitz, T. A. Structures of
MLSBK antibiotics bound to mutated large ribosomal subunits provide
a structural explanation for resistance. Cell 2005, 121, 257−270.
(13) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular
Dynamics. J. Mol. Graph. 1996, 14, 33−38.
ASSOCIATED CONTENT
■
S
* Supporting Information
General experimental protocols, computational methods, full
structural assignment of 22, and characterization of all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Funding
This work was supported by the NIH (AI080968 and
GM070855) and the University of Maryland Computer-Aided
Drug Design Center.
Notes
The authors declare no competing financial interest.
(14) Amsterdam, D. Susceptibility testing of antimicrobials in liquid
media. In Antibiotics in Laboratory Medicine, 4th ed.; Lorain, V., Ed.;
Williams & Wilkins: Baltimore, 1996; pp 52−111.
(15) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and
activity of a new generation of ruthenium-based olefin metathesis
catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene
ligands. Org. Lett. 1999, 1, 953−956.
ACKNOWLEDGMENTS
■
We thank Dr. Alexander Mankin (University of Illinois at
Chicago) for helpful suggestions. We also thank Dr. Richard
Pederson (Materia, Inc.) for catalyst support.
(16) See the Supporting Information for the synthesis of 7c.
(17) For a review, see Furstner, A. Carbon-carbon bond formations
involving organochromium (III) reagents. Chem. Rev. 1999, 99, 991−
1045.
(18) For a similar approach using this tactic: Venkatraman, L.;
Salomon, C. E.; Sherman, D. E.; Fecik, R. A. J. Org. Chem. 2006, 71,
9853.
(19) Breton, P.; Hergenrother, P. J.; Hida, T.; Hodgson, A.;
Kraynack, E.; Kym, P.; Lee, W.-C.; Loft, M.; Judd, A.; Yamashita, M.;
Martin, S. F. Total synthesis of erythromycin B. Tetrahedron 2007, 63,
5709.
ABBREVIATIONS
■
dba, dibenzylideneacetone; TBS, tert-butyldimethylsilyl; RCM,
ring-closing metathesis; NHK, Nozaki−Hiyama−Kishi; MIC,
minimum inhibitory concentration; CSA, camphorsulfonic
acid; CSP, conformationally sampled pharmacophore;
DMSO, dimethyl sulfoxide; DMAP, N,N-dimethylamino
pyridine; DMP, Dess−Martin periodinane; DMF, N,N-
dimethylformamide; Tf, trifluoromethanesulfonyl; TEL, teli-
thromycin; HREX MD, Hamiltonian Replica Exchange
Dynamics; NCS, N-chlorosuccinimide; CDI, carbonyldiimida-
zole; Hm, Haloarcula marismortui; THF, tetrahydrofuran; TAS-
F, tris(dimethylamino)sulfonium difluorotrimethylsilicate; Pyr,
pyridine
(20) Katz, L. Manipulation of modular polyketide synthases. Chem.
Rev. 1997, 97, 2557−2575.
(21) Yadav, J. S.; Pratap, T. V.; Rajender, V. Stereoselective formal
total synthesis of (+)-methynolide. J. Org. Chem. 2007, 72, 5882−
5885.
(22) Zhang, H. X.; Guibe, F.; Balavoine, G. Palladium- and
molybdenum-catalyzed hydrostannation of alkynes. A novel access to
regio- and stereodefined vinylstannanes. J. Org. Chem. 1990, 55, 1857−
1867.
(23) Evans, D. A.; Bartroli, J.; Shih, T. L. Enantioselective aldol
condensations. 2. Erythro-selective chiral aldol condensations via boron
enolates. J. Am. Chem. Soc. 1981, 103, 2127−2109.
(24) Woodward, R. B.; et al. Asymmetric total synthesis of
erythromycin. 3. Total synthesis of erythromycin. J. Am. Chem. Soc.
1981, 103, 3215−3217.
(25) Velvadapu, V.; Andrade, R. B. Concise syntheses of D-
desosamine, 2-thiopyrimidinyl desosamine donors and methyl
desosaminide analogues from D-glucose. Carbohydr. Res. 2008, 343,
145−150.
(26) Baker, W. R.; Clark, J. D.; Stephens, R. L.; Kim, K. H.
Modification of macrolide antibiotics. Synthesis of 11-deoxy-11-
(carboxyamino)-6-O-methylerythromycin A-11,12-(cyclic esters) via
an intramolecular Michael reaction of O-carbamates with an α,β-
unsaturated ketone. J. Org. Chem. 1988, 53, 2340−2345.
(27) Grant, E. B., III. Preparation of macrolide 9-alkyl- and 9-
alkylidenyl-6-O-alkyl-11,12-carbamate ketolide clarithromycin deriva-
tives as anti-bacterial agents. WO 2006047167 A2, May 4, 2006.
(28) Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.; Coffey,
D. S.; Roush, W. R. Tris(dimethylamino)sulfonium difluorotrimethyl-
silicate, a mild reagent for the removal of silicon protecting groups. J.
Org. Chem. 1998, 63, 6436−6437.
REFERENCES
■
(1) Wright, G. D. Molecular mechanisms of antibiotic resistance.
Chem. Commun. 2011, 47, 4055−4061.
(2) Doern, G. V.; Heilmann, K. P.; Huynh, H. K.; Rhomberg, P. R.;
Coffman, S. L.; Brueggemann, A. B. Antimicrobial resistance among
clinical isolates of Streptococcus pneumoniae in the United States during
1999−2000, including a comparison of resistance rates since 1994−
1995. Antimicrob. Agents Chemother. 2001, 45, 1721−1729.
(3) Bryskier, A.; Denis, A. Ketolides: Novel antibacterial agents
designed to overcome resistance to erythromycin A within gram-
positive cocci. In Macrolide Antibiotics; Schonfeld, W., Kirst, H. A.,
Eds.; Verlag: Basel, 2002; pp 97−140.
(4) Velvadapu, V.; Paul, T.; Wagh, B.; Klepacki, D.; Guvench, O.;
MacKerell, A., Jr.; Andrade, R. B. Desmethyl macrolides: Synthesis and
evaluation of 4,8,10-tridesmethyl telithromycin. ACS Med. Chem. Lett.
2010, 2, 68−72.
(5) Velvadapu, V.; Paul, T.; Wagh, B.; Glassford, I.; DeBrosse, C.;
Andrade, R. B. Total synthesis of (−)-4,8,10-tridesmethyl telithromy-
cin. J. Org. Chem. 2011, 76, 7516−7527.
(6) Velvadapu, V.; Glassford, I.; Lee, M.; Paul, T.; DeBrosse, C.;
Klepacki, D.; Small, M.; C.; MacKerell, A. D., Jr.; Andrade, R. B.
Desmethyl macrolides: synthesis and evaluation of 4,10-didesmethyl
telithromycin. ACS Med. Chem. Lett. 2012, 3, 211−215.
(7) Spahn, C. M.; Prescott, C. D. Throwing a spanner in the works:
antibiotics and the translation apparatus. J. Mol. Med. 1996, 74, 423−
439.
1017
dx.doi.org/10.1021/ml300230h | ACS Med. Chem. Lett. 2012, 3, 1013−1018