Journal of the American Chemical Society
Communication
(8) Prokofjevs, A.; Boussonniere, A.; Li, L.; Bonin, H.; Lacote, E.;
Curran, D. P.; Vedejs, E. J. Am. Chem. Soc. 2012, 134, 12281.
(9) During review of this manuscript, the use of 9BBN·NHC adducts
as precursors for borenium-based catalysts for FLP-type hydrogenations
was reported. See: Farrell, J. M.; Hatnean, J. A.; Stephan, D. W. J. Am.
Chem. Soc. 2012, 134, 15728.
Scheme 2. Revised Mechanism of Borenium-Catalyzed Imine
Reduction
(10) In recent work, the Organ group has shown that the same is true
for HSnBu3-mediated reductions, namely, that the stannane itself, rather
−
than HB(C6F5)3 , is the true reducing agent in FLP-type hydro-
stannylations of alkynes. See: Oderinde, M. S.; Organ, M. G. Angew.
Chem., Int. Ed. 2012, 51, 9834.
(11) Stephan, D. W. Dalton Trans. 2012, 41, 9015 (special issue on
FLP chemistry).
(12) Piers, W. E.; Marwitz, A. J. V.; Mercier, L. G. Inorg. Chem. 2011,
50, 12252.
(13) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65,
3090.
(14) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.
(15) (a) Rubin, M.; Schwier, T.; Gevorgyan, V. J. Org. Chem. 2002, 67,
1936. (b) Gevorgyan, V.; Rubin, M.; Liu, J.-X.; Yamamoto, Y. J. Org.
Chem. 2001, 66, 1672.
(16) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew.
Chem., Int. Ed. 2007, 46, 8050.
(17) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science
Mechanistic studies have revealed that this reaction constitutes
the first intermolecular process catalyzed by an isolated
borenium ion. This mode of reaction constitutes an attractive
alternative that avoids stoichiometric borohydride salts or
explosive hydrogen gas in the synthesis of bulky 2° amines.
Further work on the chemistry of these and related borenium
ions, including the development of an enantioselective process, is
underway in our laboratories.
2006, 314, 1124.
(18) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
(19) Lata, C. J.; Crudden, C. M. J. Am. Chem. Soc. 2010, 132, 131.
(20) Birkmann, B.; Voss, T.; Geier, S. J.; Ullrich, M.; Kehr, G.; Erker,
G.; Stephan, D. W. Organometallics 2010, 29, 5310.
(21) Non-FLP combinations have been shown to activate H2. See:
(a) Geier, S. J.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 3476.
(b) Binding, S. C.; Zaher, H.; Chadwick, F. M.; O’Hare, D. Dalton Trans.
2012, 41, 9061. However, increasing the steric bulk in one of the
components (particularly the Lewis acid) resulted in remarkable,
increased functional group tolerance (e.g., see ref 22).
ASSOCIATED CONTENT
* Supporting Information
Detailed experimental procedures, NMR spectra, kinetic data,
and characterization data. This material is available free of charge
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
(22) (a) Ero
Tarkanyi, G.; Soos
Mehdi, H.; Papai, I.; Rokob, T. A.; Kiral
Angew. Chem., Int. Ed. 2010, 49, 6559.
̋
s, G.; Nagy, K.; Mehdi, H.; Pap
, T. Chem.Eur. J. 2012, 18, 574. (b) Ero
y, P.; Tarkanyi, G.; Soos
́
ai, I.; Nagy, P.; Kiral
s, G.;
, T.
́
y, P.;
́
́
́
̋
́
́
́
́
́
The authors declare no competing financial interest.
(23) Dureen, M. A.; Lough, A.; Gilbert, T. M.; Stephan, D. W. Chem.
Commun. 2008, 4303.
(24) Webb, J. D., Ph.D. Thesis, Queen’s University, Kingston, ON,
ACKNOWLEDGMENTS
■
Financial support from the National Sciences and Engineering
Research Council of Canada (NSERC) is gratefully acknowl-
edged in terms of operating, equipment, accelerator, and strategic
grants to C.M.C. The Canada Foundation for Innovation (CFI)
is thanked for support in terms of a Leader’s Opportunity Fund
(LOF) Grant to C.M.C. Queen’s University is thanked for
support in terms of QGA Awards to A.M.B. Dr. F. Sauriol is
thanked for assistance with NMR measurements. Prof. R. S.
Brown and Dr. A. A. Neverov are thanked for helpful
conversations regarding reaction kinetics.
2011.
(25) (a) De Vries, T. S.; Vedejs, E. Organometallics 2007, 26, 3079.
(b) Benjamin, E.; Carvalho, D. A.; Stafiej, S. F.; Takacs, E. A. Inorg.
Chem. 1970, 9, 1844. (c) Vedejs, E.; Nguyen, T.; Powell, D. R.;
Schrimpf, M. R. Chem. Commun. 1996, 2721.
(26) Replacing the noncoordinating perfluorophenylborate by
tetrafluoroborate under identical conditions resulted in the slow
formation of a four-coordinate F-bridged boronium salt, as indicated
by signals with chemical shifts close to 0 ppm in the 11B NMR spectrum.
The signals for the borenium cations in 1c and 1d exhibited the same
chemical shift in the 11B NMR spectrum, indicating absence of a
bridging μ-H interaction with the electrophilic boron center and
HB(C6F5)3− in 1c.
(27) The reaction generated only the borenium ions as drawn, but for 2
and 3, remaining starting material complicated the isolation of the pure
borenium salts, so we focused on 1d.
(28) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008,
1701.
REFERENCES
■
(1) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. Chem. Rev. 2012, 112,
4246.
(2) Piers, W. E.; Bourke, S. C.; Conroy, K. D. Angew. Chem., Int. Ed.
2005, 44, 5016.
(3) Koelle, P.; Noeth, H. Chem. Rev. 1985, 85, 399.
(4) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109,
5551.
(5) Grosso, A. D.; Helm, M. D.; Solomon, S. A.; Caras-Quintero, D.;
Ingleson, M. J. Chem. Commun. 2011, 47, 12459.
(6) Del Grosso, A.; Singleton, P. J.; Muryn, C. A.; Ingleson, M. J.
Angew. Chem., Int. Ed. 2011, 50, 2102.
(29) (a) HBPin was unable to reduce the imine in the absence of
B(C6F5)3·DABCO. Similarly, DABCO alone or HBpin and DABCO in
the absence of the borenium catalyst under otherwise identical
conditions showed no reactivity. (b) Query, I. P.; Squier, P. A.;
Larson, E. M.; Isley, N. A.; Clark, T. B. J. Org. Chem. 2011, 76, 6452.
(7) (a) Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2011, 133, 20056.
(b) Prokofjevs, A.; Kampf, J. W.; Vedejs, E. Angew. Chem., Int. Ed. 2011,
50, 2098. (b) De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. J.
Am. Chem. Soc. 2009, 131, 14679.
17387
dx.doi.org/10.1021/ja307374j | J. Am. Chem. Soc. 2012, 134, 17384−17387