CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.0) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS
Catalysis Science & Technology
Page 6 of 8
ARTICLE TYPE
DOI: 10.1039/C3CY00533J
genation for Organic Synthesis, Wiley, Chichester, 2001, pp. 315ꢀ
387; (c) J. P. Adams and J. R. Paterson, J. Chem. Soc. Perkin Trans.
1, 2000, 3695; (d) D. H. Rosenblatt and E. P. Burrows, The
Chemistry of Amino, Nitroso and Nitro Compounds and their
Derivatives, WileyꢀVCH, Chichester, 1982, pp 1085; (e) J. van der
Veen and A. H. Grobben, US patent 3907768, 1975.
(a) F. A. Khan and C. Sudheer, Tetrahedron Lett., 2009, 50, 3394; (b)
Y. Lu, J. Liu, G. Diffee, D. Liu and B. Liu, Tetrahedron Lett., 2006,
47, 4597; (c) D. K. Dutta, Synth. Commun., 2006, 36, 1903; (d) J. R.
Hwu, A. R. Das, C. W. Yang, J.ꢀJ. Huang and M.ꢀH. Hsu, Org. Lett.,
2005, 7, 3211; (e) S. Wada, M. Urano and H. Suzuki, J. Org. Chem.,
2002, 67, 8254; (f) P. Ren, S. Pan, T. Dong and S.Wu, Synth.
Commun., 1996, 26, 3903.
(a) L. Hu, X. Cao, L. Chen, J. Zheng, J. Lu, X. Sun and H. Gu,
Chem. Commun., 2012, 48, 3445; (b) L. Hu, X. Cao, L. Shi, F. Qi, Z.
Guo, J. Lu and H. Gu, Org. Lett., 2011, 13, 5640; (c) H. Zhu, X. Ke,
X. Yang, S. Sarina and H. Liu, Angew. Chem., Int. Ed., 2010, 49,
9657; (d) A. Grirrane, A. Corma and H. García, Science, 2008, 1661;
(e) Y. Moglie, C. Vitale and G. Radivoy, Tetrahedron Lett., 2008,
49,1828; (f) G. R. Srinivasa, K. Abiraj and D. C. Gowda, Synth.
Commun., 2006, 33, 4221; (g) G. R. Srinivasa, K. Abiraj and D. C.
Gowda, Tetrahedron Lett., 2003, 44, 5835.
X-ray photoelectron spectroscopy (XPS): XPS data were
recorded with a Perkin Elmer PHI 5000C system equipped with a
hemispherical electron energy analyzer. The spectrometer was
operated at 15 kV and 20 mA, and a magnesium anode (Mg Kα,
hν = 1253.6 eV) was used. The C 1s line (284.6 eV) was used as
the reference to calibrate the binding energies (BE).
Transmission electron microscopy (TEM): A JEOL 2011
microscope operating at 200 kV equipped with an EDX unit
(Si(Li) detector) was used for the TEM. The samples for electron
10 microscopy were prepared by grinding and subsequent dispersing
the powder in ethanol and applying a drop of very dilute
suspension on carbonꢀcoated grids.
High resolution transmission electron microscopy
(HRTEM): HRTEM images for catalysts were taken with a
15 JEMꢀ2100F electron microscope operating at 200 kV. The size
distribution of the metal nanoclusters was determined by
measuring about 200 random particles on the images.
60
65
5
2
3
70
75
Catalytic activity test
4
(a) D. Cantillo, M. Baghbanzadeh and C. O. Kappe, Angew. Chem.,
Int. Ed., 2012, 51, 10190; (b) L. Huang, P. Luo, W. Pei, X. Liu, Y.
Wang, J. Wang, W. Xing and J. Huang, Adv. Synth. Catal., 2012, 354,
2689; (c) K. Layek, M. L. Kantam, M. Shirai, D. N.ꢀHamane, T.
Sasaki and H. Maheswaran, Green Chem., 2012, 14, 3164; (d) R.
Dey, N. Mukherjee, S. Ahammed and B. C. Ranu, Chem. Commun.
2012, 48, 7982; (e) I. Sorribes, G. Wienhöfer, C. Vicent, K. Junge, R.
Llusar and M. Beller, Angew. Chem. Int. Ed., 2012, 51, 7794; (f) P.
Lou, K. Xu, R. Zhang, L. Huang, J. Wang, W. Xing and J. Huang,
Catal. Sci. Technol., 2012, 2, 301; (g) K. Imaamura, K. Hashimoto
and H. Kominami, Chem. Commun., 2012, 48, 4356; (h) M. Makosch,
J. Sá, C. Kartusch, G. Richner, J. A. van Bokhoven and K.
Hungerbühler, ChemCatChem, 2012, 4, 59; (i) G. Wienhöfer, I.
Sorribes, A. Boddien, F. Westerhaus, K. Junge, H. Junge, R. Llusar
and M. Beller, J. Am. Chem. Soc., 2011, 133, 12875; (j) Y.
Motoyama, Y. Lee, K. Tsuji, S.ꢀH. Yoon, I. Mochida and H.
Nagashima, ChemCatChem, 2011, 3, 1578; (k) L. He, L. C. Wang, H.
Sun, J. Ni, Y. Cao, H. Y. He and K. N. Fan, Angew. Chem. Int. Ed.,
2009, 48, 9538; (l) L. Liu, B. Qiao, Z. Chen, J. Zhang and Y. Deng,
Chem. Commun., 2009, 653; (m) A. Corma, P. Serna and H. Garcia, J.
Am. Chem. Soc., 2008, 130, 8748; (n) A. Corma and P. Serna,
Science, 2006, 313, 332.
(a) N. A. Afagh and A. K. Yudin, Angew. Chem. Int. Ed., 2010, 49,
262ꢀ310; (b) N. Z. Burns, P. S. Baran and R. W. Hoffmann, Angew.
Chem., Int. Ed., 2009, 48, 2854.
(a) J. H. Kim, J. H. Park, Y. K. Chung and K. H. Park, Adv. Synth.
Catal., 2012, 354, 2412; (b) N. Sakai, K. Fujii, S. Nabeshima,
R.Ikeda and T. Konakahara, Chem. Commun., 2010, 46, 3173; (c) D.
D. Laskar, D. Prajpati and J. S. Sandhu, J. Chem. Soc., Perkin Trans.
1, 2000, 67.
(a) M. Stratakis and H. Garcia, Chem. Rev., 2012, 112, 4469; (b) T.
Mallst and A. Baiker, Annu. Rev. Chem. Biomol. Eng., 2012, 3, 11;
(c) Della Pina, E. Falletta, L. Prati and M. Rossi, Chem. Soc. Rev.,
2008, 37, 2077; (d) A. Corma and H. Garcia, Chem. Soc. Rev., 2008,
37, 2096ꢀ2126; (e) A. S. K. Hashmi and G. J. Hutchings, Angew.
Chem. Int. Ed., 2006, 45, 7896; (f) F. Z. Su, Y. M. Liu, L. C. Wang,
Y. Cao, H. Y. He and K. N. Fan, Angew. Chem., Int. Ed., 2008, 47,
334.
(a) A. Corma, P. Concepción and P. Serna, Angew. Chem. Int. Ed.,
2007, 46, 7266; (b) M. Boronat, P. Concepción, A. Corma, S.
Gonzalez, F. Lllas and P. Serna, J. Am. Chem. Soc., 2007, 129, 16230.
(a) X. B. Lou, L. He, Y. Qian, Y. M. Liu, Y. Cao and K. N. Fan, Adv.
Synth. Catal., 2011, 353, 281; (b) L. He, F. J. Yu, X. B. Lou, Y. Cao
H. Y. He and K. N. Fan, Chem. Commun., 2010, 46, 1553; (c) F. Z.
Su, L. He, J. Ni, Y. Cao, H. Y. He and K. N. Fan, Chem. Commun.,
2008, 3531.
80
General procedure for azoxy-, azox-, and aniline compounds
20 synthesis via Gold-Catalyzed Reduction of Nitroarenes:
Supported gold catalyst (1.97 mg Au, 0.01 mmol) was placed in a
25 mL twoꢀneck flask, adding nitroarenes (1 mmol), a certain
amount of KOH, 2ꢀpropanol and water. The reaction mixture was
then vigorously stirred (800 rpm with a magnetic stir bar) at the
25 designed temperature under 1 atm of N2 atmosphere for the given
reaction time. After completion of the reaction, the reaction
mixture was filtered and the catalyst was washed thoroughly with
ethanol. Then the filtrate was concentrated and dried under
reduced pressure using a rotatory evaporator. The crude product
30 was purified by column chromatography [silica 200–300;
85
90
o
petroleum ether (60~90 C)/ethyl acetate mixture] to afford the
95
product. All the products were characterized identified by GCꢀ
MS and the spectra obtained were compared with the standard
spectra. The conversion and yields were determined by GCꢀ17A
35 gas chromatograph equipped with a HPꢀFFAP column (30 m ×
0.25 mm) and a flame ionization detector (FID).
Recovery and reuse of Au/meso-CeO2: The catalyst was
collected after filtration washed with acetone for three times and
then with distilled water for several times. The catalyst was then
40 dried at 100 oC for 12 h before used for next reaction.
100
105
110
115
120
5
6
Acknowledgements
7
Financial support by the National Natural Science Foundation of
China (21073042, 21273044), New Century Excellent Talents in
the University of China (NCETꢀ09ꢀ0305), the State Key Basic
45 Research Program of PRC (2009CB623506), the Research Fund
for the Doctoral Program of Higher Education (2012007000011)
and Science & Technology Commission of Shanghai Municipaꢀ
lity (08DZ2270 500) is kindly acknowledged.
8
9
Notes and references
50 Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Department of Chemistry, Fudan University, Shanghai 200433,
† Electronic Supplementary Information (ESI) available: experimental
data, TEM, 1H and 13C NMR data. See DOI: 10.1039/b000000x/0
125 10 M. M. Wang, L. He, Y. M. Liu, Y. Cao, H. Y. He and K. N. Fan,
Green Chem., 2011, 13, 602.
55
1
(a) H.ꢀU. Blaser, H. Steiner and M. Studer, ChemCatChem, 2009, 1,
210; (b) S. Nishimura, Handbook of Heterogeneous Catalytic Hydro-
6
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]