be classified as three types: (1) C(sp3)ꢀH bond activation
with the assistance of a directing group in the presence of
transition metals to form versatile functionalized products,
including arylation, olefination, alkylation, etc.;4,5 (2)
C(sp3)ꢀH bond activation adjacent to heteroatoms, dou-
ble bonds, phenyl or electron withdrawing groups,6ꢀ8
which produces a stable intermediate and is relatively
reactive because of the high acidity of the H atom; (3)
the C(sp3)ꢀH bond activation of cycloalkanes to form
CꢀO,9 CꢀN,10 or CꢀC11 bonds, which is still rare by
virtue of the lower reactivity of C(sp3)ꢀH bonds in
cycloalkanes. Li’s group12aꢀd and others12e have done
elegant work in this field using a transition-metal catalyst
(such as Ru, Sc, Fe, etc.) both for activating the C(sp3)ꢀH
bond and subsequent coupling to form CꢀY (Y = O, N,
C) bonds. The progress of the metal-free C(sp3)ꢀH bond
activation was alsoachieved between pyridine N-oxide and
cycloalkanes promoted by tBuOOtBu, although the nitro-
gen heteroaromatics needed to be preactivated and the
regioselectivity of the reaction were not satisfactory.13
Recently, anilines also took part in C(sp3)ꢀH bond ami-
nation through NꢀCu(I) coordination.10d
activities and are widely reported in the literatures.16ꢀ18
The traditional method for the synthesis of 8-alkyl purine
derivatives is the transition-metal catalyzed coupling of 8-H
or 8-halo purines with alkyl metals (Scheme 1, route a).19
2-Alkyl benzothiazole or benzoxazoles were synthesized
through coupling of benzothiazole or benzoxazoles with
alkyl halides20 or N-tosylhydrazones21 catalyzed by a
transition-metal catalyst (Scheme 1, route b). As for the
synthesis of N6-alkylated adenine derivatives, the ortho-
dox method is amination of 6-substituted purines with
various amines.22
Scheme 1. Strategies for the Alkylation of Heteroaromatics
Purine nucleobases and nucleosides display a wide range
of biological activities (cytostatic, antiviral, antagonists
of GnRH, etc.).14,15 C8-Alkyl substituted purines and
N6-alkylated adenine derivatives possess unique biological
ꢀ
(5) (a) Prokopcova, H.; Bergman, S.; Aelvoet, D.; Smout, K. V.;
Herrebout, W.; Veken, B. V.; Meerpoel, L.; Maes, B. U. W. Chem.;
Eur. J. 2010, 16, 13063–13067. (b) Shabashov, D.; Daugulis, O. Org.
Lett. 2005, 7, 3657–3659. (c) Stowers, K. J.; Fortner, K. C.; Sanford,
M. S. J. Am. Chem. Soc. 2011, 133, 6541–6544. (d) Pastine, S. J.;
Gribkov, D.; Sames, V. D. J. Am. Chem. Soc. 2006, 128, 14220–14221.
(e) Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70–73.
(6) Li, C.-J. Acc. Chem. Res. 2009, 42, 335–344.
(7) (a) Zhang, G.; Zhang, Y.-H.; Wang, R. Angew. Chem., Int. Ed.
2011, 50, 10429–10432. (b) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang,
M. Org. Lett. 2011, 13, 5016–5019.
(8) (a) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew. Chem.,
Int. Ed. 2009, 48, 3817–3820. (b) Ni, Z.-K.; Zhang, Q.; Xiong, T.; Zheng,
Y.-Y.; Li, Y.; Zhang, H.-W.; Zhang, J.-P.; Liu, Q. Angew. Chem., Int.
Ed. 2012, 51, 1244–1247. (c) Xie, P.; Xie, Y.-J.; Qian, B.; Zhou, H.; Xia,
C.-G.; Huang, H.-M. J. Am. Chem. Soc. 2012, 134, 9902–9905. (d) Qian,
B.; Guo, S.-M.; Shao, J.-P.; Zhu, Q.-M.; Yang, L.; Xia, C.-G.; Huang,
H.-M. J. Am. Chem. Soc. 2010, 132, 3650–3651.
Herein, we wish to report a double activation of hetero-
aromatics and C(sp3)ꢀH alkanes with high regioselectiv-
ities. Metal-free conditions gave CꢀC bond formation
products, and adding CuI gave C(sp3)ꢀH bond amination
products.
Initially, we started our study by using 20,30,50-tri-O-
acetyladenosine (1a) and cyclohexane (2a) as model sub-
strates to optimize the reaction conditions (see the Supporting
(9) Iwahama, T.; Syojyo, K.; Sakaguchi, S.; Ishii, Y. Org. Process
Res. Dev. 1998, 2, 255–260.
(10) (a) Field, K. W.; Kovacic, P.; Herskovitz, T. J. Org. Chem. 1970,
35, 2146–2151. (b) Deng, G.-J.; Chen, W.-W.; Li, C.-J. Adv. Synth.
Catal. 2009, 351, 353–356. (c) Michaudel, Q.; Thevenet, D.; Baran, P. S.
J. Am. Chem. Soc. 2012, 134, 2547–2550. (d) Gephart, R. T., III; Huang,
D. L.; Aguila, M. J. B.; Schmidt, G.; Shahu, A.; Warren, T. H. Angew.
Chem., Int. Ed. 2012, 51, 6488–6492.
(18) (a) Vittori, S.; Lorenzen, A.; Stannek, C.; Costanzi, S.; Volpini,
R.; IJzerman, A. P.; Von Frijtag Drabbe Kunzel, J. K.; Cristalli, G.
J. Med. Chem. 2000, 43, 250–260. (b) Calenbergh, S. V.; von Frijtag
Drabbe Kunzel, J. K.; Blaton, N. M.; Peeters, O. M.; Rozenski, J.;
Aerschot, A. V.; Bruyn, A. D.; Keukeleire, D. D.; IJzerman, A. P.;
Herdewijn, P. J. Med. Chem. 1997, 40, 3765–3772.
(11) (a) Yonehara, F.; Kido, Y.; Morita, S.; Yamaguchi, M. J. Am.
Chem. Soc. 2001, 123, 11310–11311. (b) Oshita, M.; Chatani, N. Org.
Lett. 2004, 6, 4323–4325.
(12) (a) Deng, G.-J.; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008,
47, 6278–6282. (b) Zhang, Y.; Li, C.-J. Eur. J. Org. Chem. 2007, 4654. (c)
Deng, G.-J.; Zhao, L.; Li, C.-J. Org. Lett. 2009, 11, 1171–1174. (d) Guo,
X.-Y.; Li, C.-J. Org. Lett. 2011, 13, 4977–4979. (e) Newhouse, T.; Baran,
P. S. Angew. Chem., Int. Ed. 2011, 50, 3362–3374.
(13) Deng, G.-J.; Ueda, K.; Yanagisawa, S.; Itami, K.; Li, C.-J.
Chem.;Eur. J. 2009, 15, 333–337.
(14) Qu, G.-R.; Xia, R.; Yang, X.-N.; Li, J.-G.; Wang, D.-C.; Guo,
H.-M. J. Org. Chem. 2008, 73, 2416–2419.
(19) (a) Hasnık, Z.; Pohl, R.; Hocek, M. Synthesis 2009, 1309–1317.
´
ꢁ
ꢀ
ꢀ
(b) Hocek, M.; Hockova, D.; Stambasky, J. Collect. Czech. Chem.
Commun. 2003, 68, 837–848. (c) Ogasawara, S.; Maeda, M. Angew.
Chem., Int. Ed. 2008, 47, 8839–8842. (d) Qu, G.-R.; Xin, P.-Y.; Niu,
H.-Y.; Wang, D.-C.; Ding, R.-F.; Guo, H.-M. Chem. Commun. 2011, 47,
11140–11142. (e) Hirth, B.; Barker, R. H., Jr.; Celatka, C. A.; Klinger,
J. D.; Liu, H.-L.; Nare, B.; Nijjar, A.; Phillips, M. A.; Sybertz, E.;
Willert, E. K.; Xiang, Y.-B. Bioorg. Med. Chem. Lett. 2009, 19, 2916–
2919.
(20) (a) Ackermann, L.; Punji, B.; Song, W.-F. Adv. Synth. Catal.
2011, 353, 3325–3329. (b) Ren, P.; Salihu, I.; Scopelliti, R.; Hu, X.-L.
Org. Lett. 2012, 14, 1748–1751. (c) Tran, L. D.; Daugulis, O. Org. Lett.
2010, 12, 4277–4279.
(15) Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.
(16) Kavai, I.; Mead, L. H.; Drobniak, J.; Zakrzewski, S. F. J. Med.
Chem. 1975, 18, 3272–3275.
(21) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int.
Ed. 2012, 51, 775–779.
€
(17) Chang, L. C. W.; Spanjersberg, R. F.; Frijtag Drabbe Kunzel,
(22) Bressi, J. C.; Choe, J.-W.; Hough, M. T.; Buckner, F. S.;
Voorhis, W. C. V.; Verlinde, C. L. M. J.; Hol, W. G.; Gelb, J. M. H.
J. Med. Chem. 2000, 43, 4135–4150.
J. K.; Mulder-Krieger, T.; Brussee, J.; Jzerman, A. P. J. Med. Chem.
2006, 49, 2861–2867.
B
Org. Lett., Vol. XX, No. XX, XXXX