Scheme 1 Proposed TBPB formation pathway.
TBHP ð4:0 eq:Þ=nBu4NI ð0:4 eq:Þ
Scheme 2 A plausible pathway for the reaction.
Ph-CHO
Ph-COOH 0% ð1Þ
H2O; 80 ꢁC; 12 h; N2
C–H bond of alkylarene to afford benzylic radical 6, which is
re-oxidized quickly by (hypo)iodites to provide benzyl cation
7.8b,11 Finally, the reaction of 7 with the benzoate anion affords
the ester. It has been reported that the reaction of 2-picoline
N-oxide with acetic anhydride yields the 2-pyridylcarbinol
acetate, together with some sp2 C–H acyloxylation products.12
In the case of 2-methylquinolines, neither 2-methylquinoline
N-oxide nor the sp2 C–H acyloxylation product was detected.
In summary, we have developed a metal-free approach for
the direct acyloxylation of benzylic C–H bonds using aromatic
aldehydes under mild and clean conditions. Further investiga-
tions of the detailed mechanism are underway.
TBHP ð4 eq:Þ=nBu4NI ð0:1 eq:Þ
H2O; 80 ꢁC; 2 h; N2
1a Ph-CHO
0:5 mmol 1 mmol
TBPB 3a
30% 10%
þ
þ
ð2Þ
nBu4NI ð0:1 eq:Þ
H2O; 80 ꢁC; 4 h; N2
1a TBPB
0:5 mmol 1 mmol
þ
3a 70%
ð3Þ
TBHP ð4:0 eq:Þ=nBu4NI ð0:4 eq:Þ
TEMPO ð2:0 eq:Þ H2O; 80 ꢁC; 12 h; N2
1a Ph-CHO
0:5 mmol 1 mmol
þ
N: R:
ð4Þ
Financial support from the National Natural Science
Foundation of China (No. 21172120, 20902050) is greatly
appreciated.
I2 ð0:1 eq:Þ=nBu4NOH ð0:1 eq:Þ
1a Ph-CHO
0:5 mmol 1 mmol
þ
N: R: ð5Þ
H2O; 80 ꢁC; 2 h; N2
l2 ð0:1 eq:Þ=nBu4NOH ð0:1 eq:Þ
H2O; 80 ꢁC; 4 h; N2
1a TBPB
0:5 mmol 1 mmol
þ
3a 60%
ð6Þ
Notes and references
1 (a) J. D. Weaver, A. Recio, III, A. J. Grenning and J. A. Tunge,
Chem. Rev., 2011, 111, 1846; (b) R. Kuwano, Synthesis, 2009, 1049.
2 (a) M. S. Kharasch and G. Sosnovsky, J. Am. Chem. Soc., 1958,
80, 756; (b) D. J. Rawlinson and G. Sosnovsky, Synthesis, 1972, 1;
(c) J. Eames and M. Watkinson, Angew. Chem., Int. Ed., 2001,
40, 3567; (d) M. B. Andrus and J. C. Lashley, Tetrahedron, 2002,
58, 845.
TBHP ð4:0 eq:Þ=nBu4NI ð0:4 eq:Þ
H2O; 80 ꢁC; 12 h; N2
1a
0:5 mmol
PhCOONa
1 mmol
þ
3a 60%
ð7Þ
proceeded smoothly to give the corresponding esters.9
Moreover, benzylic alcohol can be oxidized to TBPB under
the present conditions.9 The results indicate that Cannizaro
reaction may also be involved as an alternative pathway for
the formation of TBPB. As shown in Scheme 1b, TBHP
induces the disproportionation of benzaldehyde to give TBPB
and benzyl alcohol. The thus-generated benzyl alcohol is
re-oxidized to benzaldehyde, which subsequently reacts with
TBHP to form TBPB. We next investigated whether in situ
generated hypoiodite ([IO]ꢀ) or iodite ([IO2]ꢀ) was the catalytic
species.7a The reaction of 1a with benzaldehyde gave no
product in the presence of a catalytic amount of I2 and
NH4OH ([IO]ꢀ and [IO2]ꢀ generated in situ) (eqn (5)).8b In
sharp contrast, reaction of 1a with TBPB afforded 3a in 60%
yield under the similar conditions to those of eqn (5) (eqn (6)).
These results seem to indicate that [IO]ꢀ or [IO2]ꢀ may be
ineffective for the formation of TBPB at the initial stage of the
reaction but that they play a key role in the subsequent C–O
bond forming step. When sodium benzoate was subjected to the
reaction conditions, 60% of ester was isolated (eqn (7)). It is
evident that a benzyl cation is involved in this reaction.10 As
shown in Scheme 2, first, TBHP and TBPB can be decomposed
by the iodide ion to generate a tert-butoxyl radical and benzoic
acid. The iodide ion is oxidized to corresponding (hypo)iodites
([IO]ꢀ or [IO2]ꢀ). Subsequently, the tert-butoxyl radical or
(hypo)iodites abstract a hydrogen atom from the benzylic
3 (a) L. V. Desai, H. A. Malik and M. S. Sanford, Org. Lett., 2006,
8, 1141; (b) B. Lucke, K. V. Narayana, A. Martin and K. Jahnisch,
Adv. Synth. Catal., 2004, 346, 1407; (c) J. Zhang, E. Khaskin,
N. P. Anderson, P. Y. Zavalij and A. N. Vedernikov, Chem.
Commun., 2008, 3625.
¨
¨
4 L.-T. Li, J. Huang, H.-Y. Li, L.-J. Wen, P. Wang and B. Wang,
Chem. Commun., 2012, 48, 5187.
5 (a) B. Qian, S. Guo, J. Shao, Q. Zhu, L. Yang, C. Xia and
H. Huang, J. Am. Chem. Soc., 2010, 132, 3650; (b) B. Qian,
S. Guo, C. Xia and H. Huang, Adv. Synth. Catal., 2010,
352, 3195; (c) P. M. Burton and J. A. Morris, Org. Lett., 2010,
12, 5359; (d) H. Komai, T. Yoshino, S. Matsunaga and M. Kanai,
Org. Lett., 2011, 13, 1706; (e) A. Kumar, G. Gupta and
S. Srivastava, Org. Lett., 2011, 13, 6366; (f) R. Niu, J. Xiao,
T. Liang and X. Li, Org. Lett., 2012, 14, 676; (g) M. Rueping and
N. Tolstoluzhsky, Org. Lett., 2011, 13, 1095; (h) Y. Yan, K. Xu,
Y. Fang and Z. Wang, J. Org. Chem., 2011, 76, 6849.
6 (a) L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu and
X. Wan, Chem.–Eur. J., 2011, 17, 4085; (b) W. Wei, C. Zhang,
Y. Xu and X. Wan, Chem. Commun., 2011, 47, 10827.
7 (a) I. Matsuzaki, T. Nakajima and H. A. Liebhafsky, Chem. Lett.,
1974, 1463; (b) M. Uyanik and K. Ishihara, ChemCatChem, 2012,
4, 177; (c) M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara,
Science, 2010, 328, 1376; (d) M. Kirihara, Y. Asai, S. Ogawa,
T. Noguchi, A. Hatano and Y. Hirai, Synthesis, 2007, 3286.
8 (a) E. Shi, Y. Shao, S. Chen, H. Hu, Z. Liu, J. Zhang and X. Wan,
Org. Lett., 2012, 14, 3384; (b) J. Feng, S. Liang, S.-Y. Chen,
J. Zhang, S.-S. Fu and X.-Q. Yu, Adv. Synth. Catal., 2012, 1287.
9 See the ESIw for investigation of mechanism.
10 According to the results of control experiments, the radical chain
process was excluded.
11 S. Hashizume, K. Oisaki and M. Kenai, Org. Lett., 2011, 13, 4288.
12 T. Cohen and G. L. Deets, J. Am. Chem. Soc., 1972, 94, 932.
c
10206 Chem. Commun., 2012, 48, 10204–10206
This journal is The Royal Society of Chemistry 2012