the photosensitizers with extraordinary high molar ab-
sorption coefficient and FR (or NIR) absorption.13ꢀ22 In
general, squaraine dye-sensitized DSSC can efficiently
convert the low-energy (∼1.4 eV) photons into electricity,
which makes the squaraine dyes not only the promising
cosensitizers for organic dyes with a complementary
absorption profile23,24 but also good candidates to be
combined with luminescent energy-relay dyes.25 How-
ever, there are only small amounts of squaraine-sensitized
DSSCs exhibiting a panchromatic or even FR/NIR re-
sponse.22 Recently we had reported26 two unsymmetrical
squaraine dyes (JYL-SQ5 and JYL-SQ6) where the elec-
tron-rich 3,4-ethylene-dioxythiophene or bithiophene
conjugated fragment was used to link unconventionally
the squaraine core and the hexyloxyphenyl amino group.
DSSCs based on those two sensitizers exhibited an attrac-
tively panchromatic response and also convert a portion
of the near-infrared photons into electricity. Neverthe-
less, their IPCE value is almost zero at the wavelength
over 900 nm.
red-shifting the absorption of squaraine dye. In this article,
we report the synthesis and photovoltaic performance of
two new unsymmetrical squaraine dyes, coded WCH-
SQ10 and WCH-SQ11, which are further optimized for
the FR and NIR sensitization of DSSCs.
The molecular structures of WCH-SQ10 and WCH-
SQ11 and their preparation procedure are depicted in
Scheme 1. The intermediates of the target dyes were char-
acterized by 1H NMR and the structure of the dyes were
further verified by 13C NMR, elemental analysis and mass
spectroscopy as given in the experimental section of the
Supporting Information (SI). The synthetic details and
NMR spectra of some intermediates are also provided in
the SI.
Scheme 1. Preparation Scheme for WCH-SQ10 and WCH-
SQ11
To obtain squaraine dyes with the absorption in the
infrared region, a more sophisticated molecular engineer-
ing is necessary. Recently, Guang et al. reported27 a sym-
metrical squaraine dye bearing carboxylic acid-substituted
quinoline acceptor with the λmax up to 754 nm, which is
much longer than that for the corresponding squaraine
bearing carboxylic acid substituted indoline (SQ1) devel-
oped by Graetzel et al.19 Quinoline may be a better unit for
ꢀ
(11) Altobello, S.; Argazzi, R.; Caramori, S.; Contado, C.; Da Fre,
S.; Rubino, P.; Chone, C.; Larramona, G.; Bignozzi, C. A. J. Am. Chem.
ꢀ
Soc. 2005, 127, 15342.
(12) Kinoshita, T.; Fujisawa, J. I.; Nakazaki, J.; Uchida, S.; Kubo,
T.; Segawa, H. J. Phys. Chem.Lett. 2012, 3, 394.
(13) Zhao, W.; Hou, Y.; Wang, X.; Zhang, B.; Cao, Y.; Yang, R.;
Wang, W.; Xiao, X. Sol. Energy Mater. Sol. Cells 1999, 58, 173.
(14) Li, C.; Wang, W.; Wang, X.; Zhang, B.; Cao, Y. Chem. Lett.
2005, 35, 554.
(15) Alex, S.; Santhosh, U.; Das, S. J. Photochem. Photobiol. A:
Chem. 2005, 172, 63.
(16) Otsuka, A.; Funabiki, K.; Sugiyama, N.; Yoshida, T. Chem.
Lett. 2006, 666.
(17) Tatay, S.; Haque, S. A.; O’Regan, B.; Durrant, J.; Verhees,
~
W. J. H.; Kroon, J. M.; Vidal-Ferran, A.; Gavina, P.; Palomares, E.
The electronic absorption spectra of WCH-SQ10 and
WCH-SQ11 measured in ethanol are shown in Figure 1.
WCH-SQ10 owns an intense absorption band centered
at 686 nm with a high molar absorption coefficient (ε)
of 9.24 ꢁ 104 Mꢀ1 cmꢀ1. The fwhm (full width at half-
maximum), λmax and ε value of the absorption band for
WCH-SQ10 are broader, slightly blue-shifted and lower
compared to those for JYL-SQ5 (for its structure, see SI)
that we reported previously.26 Nevertheless, WCH-SQ10
can efficiently adsorb the photons at a much lower energy
compared to other unsymmetrical squaraines reported in
literature.13ꢀ22 As expected, the λmax of the absorption
spectrum for WCH-SQ11 blue-shifted 13 nm compared to
that for WCH-SQ10. The ε value (8.72 ꢁ 104 Mꢀ1 cmꢀ1) is
also lower than that of WCH-SQ10 although the fwhm
of the absorption bands for both dyes are similar: 122 and
120 nm for WCH-SQ10 and WCH-SQ11, respectively.
To understand how the electron density redistributed
after photoexcitations, the density functional theory (DFT)
J. Mater. Chem. 2007, 17, 3037.
(18) Burke, A.; Schmidt-Mende, L.; Ito, S.; Gratzel, M. Chem.
€
Commun. 2007, 234.
(19) Yum, J. H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.;
€
€
Nuesch, F.; Angelis, F. D.; Gratzel, M.; Nazeeruddin, M. K. J. Am.
Chem. Soc. 2007, 129, 10320.
(20) Geiger, T.; Kuster, S.; Yum, J. H.; Moon, S. J.; Nazeeruddin,
€
€
M. K.; Gratzel, M.; Nuesch, F. Adv. Funct. Mater. 2009, 19, 2720.
(21) Beverina, L.; Ruffo, R.; Mari, C. M.; Pagani, G. A.; Sassi, M.;
€
De Angelis, F.; Fantacci, S.; Yum, J. H.; Gratzel, M.; Nazeeruddin,
M. K. ChemSusChem 2009, 2, 621.
(22) Choi, H.; Kim, J. J.; Song, K.; Ko, J.; Nazeeruddin, M. K.;
€
Gratzel, M. J. Mater. Chem. 2010, 20, 3280.
(23) Chen, Y.; Zeng, Z.; Li, C.; Wang, W.; Wang, X.; Zhang, B. New
J. Chem. 2005, 29, 773.
(24) Choi, H.; Kim, S.; Kang, S. O.; Ko, J.; Kang, M. S.; Clifford,
€
J. N.; Forneli, A.; Palomares, E.; Nazeeruddin, M. K.; Gratzel, M.
Angew. Chem., Int. Ed. 2008, 47, 8259.
(25) Yum, J. H.; Hardin, B. E.; Moon, S. J.; Baranoff, E.; Nuesch, F.;
€
McGehee, M. D.; Gratzel, M.; Nazeeruddin, M. K. Angew. Chem., Int.
€
Ed. 2009, 48, 9277.
(26) Li, J. Y.; Chen, C. Y.; Lee, C. P.; Chen, S. C.; Lin, T. H.; Tsai,
H. H.; Ho, K. C.; Wu, C. G. Org. Lett. 2010, 12, 5454.
(27) Yan, Z.; Guang, S.; Su, X.; Xu, H. J. Phys. Chem. C 2012, 116,
8894.
Org. Lett., Vol. 14, No. 21, 2012
5421