Until now, a variety of substrates having linkers such
as ethylene (ÀCH2CH2À),5 ester,6 N-tosyl,7 amide,8 ether,9
diethyl malonate,10 ynamide,11 and arene12 between the
arene and alkyne have been used in hydroarylation reactions
(Figure 1).
Scheme 1. Transition-Metal-Catalyzed Intramolecular Hydro-
arylation of Aryl Enynes
of new and efficient methodologies for the regioselective
synthesis of polysubstituted naphthalenes has attracted
much attention.15 In this regard, we envisioned that treat-
ment of ethyl (E)-2-alkynyl cinnamates with a variety of
catalysts would give naphthalenes. Moreover, because
there are two nucleophilic centers in ethyl (E)-2-alkynyl
cinnamates, we envisaged that a sharp reversal of the
selectivity or reaction pathway would be achieved by varing
the catalysts. Rossi et al. reported that 3-[l-(aryl)methyl-
idene]- and 3-(1-alkylidene)-3H-furan-2-ones have been
synthesized by cyclization of the corresponding (E)-2-
(1-alkynyl)-3-aryl/alkylpropenoic acids in the presence of
Ag- or Pd-catalysts.16 Although Burton et al. described
a synthetic method for synthesizing naphthalenes via
Sonogashira reaction of R-bromocinnamates followed
by electrocyclization of in situ generated allene intermedi-
ates, catalyzed by DBU, the reaction conditions are very
harsh (NMP, 200 °C).17 Also, because isomerization of
enynes to allenes is necessary to obtain hydroarylated
products, tert-butyl- or phenyl-substituted aryl enynes
did not produce naphthalenes. To overcome the inherent
problems of the previously reported method, and develop
a new reaction pathway to naphthalenes that depended
on variation of the catalyst, we describe herein our results
on the selective hydroarylation reaction of a number of
aryl enynes with Au- and Pt-catalysts (Scheme 1).
Figure 1. Substrates for intramolecular hydroarylation.
Recently, we developed a stereoselective synthetic method
for securing ethyl (E)-2-ethynyl/alkynyl cinnamates via
DABCO-catalyzed elimination, or a sequential Sonogashira
cross-coupling with allenyl acetates.13 Because polysubsti-
tuted naphthalenes have played an important role in the
chemical and pharmaceutical industries,14 the development
(7) (a) Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun. 2010,
46, 1748. (b) Huang, W.; Shen, Q.-S.; Wang, J.-L.; Zhou, X.-G. J. Org.
~
~
Chem. 2008, 73, 1586. (c) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel,
ꢀ
E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int.
Ed. 2004, 43, 2402. (d) Ishikawa, T.; Manabe, S.; Aikawa, T.; Kudo, T.;
Saito, S. Org. Lett. 2004, 6, 2361. (e) Martın-Matute, B.; Nevado, C.;
´
ꢀ
Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757.
(8) (a) Shibuya, T.; Shibata, Y.; Noguchi, K.; Tanaka, K. Angew.
Chem., Int. Ed. 2011, 50, 3963. (b) Jiang, T.-S.; Tang, R.-Y.; Zhang,
X.-G.; Li, X.-H.; Li, J.-H. J. Org. Chem. 2009, 74, 6749. (c) Yoon, M. Y.;
Kim, J. H.; Choi, D. S.; Shin, U. S.; Lee, J. Y.; Song, C. E. Adv. Synth.
Catal. 2007, 349, 1725. (d) Song, C. E.; Jung, D.-u.; Choung, S. Y.; Roh,
E. J.; Lee, S.-g. Angew. Chem., Int. Ed. 2004, 43, 6183.
(9) (a) Barluenga, J.; Trincado, M.; Marco-Arias, M.; Ballesteros, A.;
ꢀ
We initiated our investigation using ethyl (E)-2-ethynyl
cinnamate 1a13 (Table 1). Although 1a did not react with
AuCl3 (5 mol %) and AgOTf (15 mol %), the hydroary-
lated product 2a was obtained in 20% yield in 6-endo mode
with AuCl3/AgOTf or Ph3PAuCl/AgBF4 (5 mol % each)
in the presence of trifluoromethanesulfonic acid (TfOH,
5 mol %) (entries 1À3). To check the possibility of cycliza-
tion by a protic acid, we attempted the cyclization in the pres-
ence of TfOH (1 equiv) and found that 2a was not produced
(entry 4). Pt(PPh4)4 (5 mol %) and PtCl2(PPh3)2 (5 mol %)
also did not give the cyclized product (entries 5 and 6), while
PtCl2 (5 mol %) provided 2a in 70% yield (entry 7). Of
the hydroarylation reactions screened, the best results were
obtained with PtCl4 (5 mol %) in toluene at 110 °C for
10 min, which selectively produced 2a (87%) (entry 8).
Toluene was the best solvent among the several examined
(toluene, DCM, acetonitrile, and DCE) (enties 8À11).
To demonstrate the efficiency and scope of the present
method, we applied this catalytic system to a wide range of
ethyl (E)-2-ethynyl cinnamate derivatives 1, and the results
Rubio, E.; Gonzalez, J. M. Chem. Commun. 2005, 2008. (b) Pastine, S. J.;
Youn, S. W.; Sames, D. Org. Lett. 2003, 5, 1055. (c) Pastine, S. J.; Youn,
S. W.; Sames, D. Tetrahedron 2003, 59, 8859.
(10) (a) Huang, W.; Zheng, P.; Zhang, Z.; Liu, R.; Chen, Z.; Zhou, X.
J. Org. Chem. 2008, 73, 6845. (b) Inoue, H.; Chatani, N.; Muari, S.
J. Org. Chem. 2002, 67, 1414. (c) Chatani, N.; Inoue, H.; Ikeda, T.;
Murai, S. J. Org. Chem. 2000, 65, 4913.
(11) Zhang, Y.; Hsung, R. P.; Zhang, X.; Huang, J.; Slafer, B. W.;
Davis, A. Org. Lett. 2005, 7, 1047.
(12) (a) Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130,
5636. (b) Yao, T.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677.
€
€
(c) Furstner, A.; Mamane, V. Chem. Commun. 2003, 2112. (d) Furstner,
A.; Mamane, V. J. Org. Chem. 2002, 67, 6264. (e) Yamaguchi, S.;
Swager, T. M. J. Am. Chem. Soc. 2001, 123, 12087.
(13) (a) Choe, Y.; Lee, P. H. Org. Lett. 2009, 11, 1445. (b) Kim, H.;
Shin, D.; Lee, K.; Lee, S.; Kim, S.; Lee, P. H. Bull. Korean Chem. Soc.
2010, 31, 742.
(14) (a) Xie, X.; Kozlowski, M. C. Org. Lett. 2001, 3, 2661. (b) Terao,
Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron 2000, 56, 1315. (c)
Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.;
Kotera, J.; Ikeo, T. J. Med. Chem. 1999, 42, 1293. (d) Zhao, H.; Neamati,
N.; Mazumder, A.; Sunder, S.; Pommier, Y.; Burke, T. R., Jr. J. Med.
Chem. 1997, 40, 1186. (e) Eich, E.; Pertz, H.; Kaloga, M.; Schulz, J.;
Fesen, M. R.; Mazumder, A.; Pommier, Y. J. Med. Chem. 1996, 39, 86.
(f) Padwa, A.; Chiacchio, U.; Fairfax, D. J.; Kassir, J. M.; Litrico, A.;
Semones, M. A.; Xu, S. L. J. Org. Chem. 1993, 58, 6429. (g) Batt, D. G.;
Maynard, G. D.; Petraitis, J. J.; Shaw, J. E.; Galbraith, W.; Harris, R. R.
J. Med. Chem. 1990, 33, 360. (h) Whiting, D. A. Nat. Prod. Rep. 1985, 2,
191.
(16) Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamin, P.
Tetrahedron 1998, 54, 135.
(17) (a) Wang, Y.; Burton, D. J. Org. Lett. 2006, 8, 5295. (b) Wang,
Y.; Xu, J.; Burton, D. J. J. Org. Chem. 2006, 71, 7780.
(15) (a) de Koning, C. B.; Rousseau, A.; van Otterlo, W. A. L.
Tetrahedron 2003, 59, 7. (b) Modern Arene Chemistry; Astruc, D., Ed.;
Wiley-VCH: Weinheim, 2002. (c) Katritzky, A. R.; Li, J.; Xie, L. Tetra-
hedron 1999, 55, 8263.
B
Org. Lett., Vol. XX, No. XX, XXXX