ORGANIC
LETTERS
2012
Vol. 14, No. 21
5506–5509
Ruthenium- and Sulfonamide-Catalyzed
Cyclization between N‑Sulfonyl Imines
and Alkynes
Peng Zhao, Fen Wang, Keli Han, and Xingwei Li*
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
China
Received September 20, 2012
ABSTRACT
Ruthenium(II)-catalyzed redox-neutral annulative coupling of N-sulfonyl imines with alkynes has been achieved for the synthesis of indenamines,
where a sulfonamide cocatalyst is necessary.
Transition-metal-catalyzed CꢀH bond activation has
been increasingly explored and has been realized as a
widely used strategy in the synthesis of complex structures.1
The advantage of CꢀH activation lies in the harnessing of
ubiquitous yet often unreactive CꢀH bonds. Transition-
metal-catalyzed cyclization via CꢀH activation represents
an efficient method for the construction of carbocycles and
heterocycles.2,3 This method is powerful because no pre-
activation of the CꢀH bond to traditionally used carbonꢀ
halogen and carbonꢀmaingroupmetalbondsisnecessary.
Carbocyclization via CꢀH activation and insertion of a
π-bond leads to very useful synthetic methods, where
mechanistically distinct reactions are successfully com-
bined in a tandem process.
(1) For selected reviews, see: (a) Arockiam, P. B.; Bruneau, C.;
Dixneuf, P. H. Chem. Rev. 201210.1021/cr300153j. (b) Song, G.; Wang, F.;
Li, X. Chem. Soc. Rev. 2012, 41, 3651. (c) Engle, K. M.; Mei, T.-S.; Wasa,
M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (d) Wencel-Delord, J.;
Droge, T.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (e) Yeung, C. S.;
Dong, V. M. Chem. Rev. 2011, 111, 1215. (f) Cho, S. H.; Kim, J. Y.;
Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (g) Sun, C.-L.; Li,
B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (h) Colby, D. A.;
Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (i) Lyons,
T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (j) Chen, X.; Engle,
K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(k) Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212. (l) Ackermann,
L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
(2) For rhodium catalysis, see: (a) Muralirajan, K.; Parthasarathy,
K.; Cheng., C.-H. Angew. Chem., Int. Ed. 2011, 50, 4169. (b) Tsai, A. S.;
Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011,
133, 1248. (c) Lian, Y.; Bergman, R. G.; Ellman, J. A. Chem. Sci. 2012, 3,
3088. (d) Li, B.-J.; Wang, H.-Y.; Zhu, Q.-L.; Shi, Z.-J. Angew. Chem.,
Int. Ed. 2012, 51, 3948. (e) Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.;
Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 2115. (f) Tran,
D. N.; Cramer, N. Angew. Chem., Int. Ed. 2011, 50, 11098. (g) Hyster,
T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846. (h) Jayakumar, J.;
Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2012, 51, 197.
(i) Yang, L.; Correia, C. A.; Li, C.-J. Adv. Synth. Catal. 2011, 353, 1269.
(j) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc.
2011, 133, 2154. (k) Sun, Z.-M.; Chen, S.-P.; Zhao, P. Chem.;Eur. J.
2010, 16, 2619. (l) Mochida, S.; Shimizu, M.; Hirano, K.; Satoh, T.;
Miura, M. Chem.;Asian J. 2010, 5, 847. (m) Guimond, N.; Fagnou, K.
J. Am. Chem. Soc. 2009, 131, 12050. (n) Stuart, D. R.; Bertrand-Laperle,
M. G.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130,
16474.
Recently, catalytic insertion of CꢀH bonds into alkynes
(hydroarylation) has been increasingly explored using
(3) For rhutheniumcatalysis, see: (a) Ackermann, L.; Fenner, S. Org.
Lett. 2011, 13, 6548. (b) Li, B.; Feng, H.-L.; Xu, S.-S.; Wang, B.-Q.
Chem.;Eur. J. 2011, 17, 12573. (c) Li, B.; Ma, J.-F.; Wang, N.-C.; Feng,
H.-L.; Xu, S.-S.; Wang, B.-Q. Org. Lett. 2012, 14, 736. (d) Chinnagolla,
R. K.; Jeganmohan, M. Chem. Commun. 2012, 48, 2030. (e) Ackermann,
L.; Wang, L.; Lygin, A. V. Chem. Sci. 2012, 3, 177. (f) Chinnagolla,
R. K.; Jeganmohan, M. Eur. J. Org. Chem. 2012, 417. (g) Ackermann,
L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012, 14, 930. (h)
Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153. (i) Chinnagolla,
R. K.; Pimparkar, S.; Jeganmohan, M. Org. Lett. 2012, 14, 3032. (j)
Parthasarathy, K.; Senthilkumar, N.; Jayakumar, J.; Cheng, C.-H. Org.
Lett. 2012, 14, 3478. (k) Thirunavukkarasu, V. S.; Donati, M.;
Ackermann, L. Org. Lett. 2012, 14, 3416. (l) Ackermann, L.; Lygin,
A. V. Org. Lett. 2012, 14, 764. (m) Ackermann, L.; Lygin, A. V.;
Hofmann, N. Org. Lett. 2011, 13, 3278. (n) Padala, K.; Jeganmohan,
M. Org. Lett. 2012, 14, 1134. (o) Padala, K.; Jeganmohan, M. Org. Lett.
2011, 13, 6144. (p) Padala, K.; Pimparker, S.; Madasamy, P.; Jeganmohan,
M. Chem. Commun. 2012, 48, 7140.
(4) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2010,
132, 9602.
r
10.1021/ol302594w
Published on Web 10/23/2012
2012 American Chemical Society