546
A. G. Zavozin et al. / Tetrahedron Letters 51 (2010) 545–547
Table 1
Bromination of methyl ketones with Br2 in ionic liquids and organic solvents (a comparative study)
O
O
O
O
Br2
R
+
R
+
R
R
Solvent
Br
Br
Br Br
1
2
3
4
R = CO2H (a), CO2Bun (b), CO2Me (c), Prn (d)
Entry
Ketone
Solvent
T (°C)
Time (h)
Ratio (run)
2
3
4
1a
2a
1a
1a
1a
1b
1a
1a
1a
1a
1a
1a
1c
1c
1d
1d
1a
1a
CHCl3
50
65
65
20
20
50
20
20
20
20
20
20
65
20
20
20
1.0
1.0
3.5
21
0.33
0.25
0.16
0.42
0.16 (1), 0.02 (2)
0.75
0.33
0.05
3
0.1
2.0
2.2
3.0
3.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
3.4
5.0
2.5
6.0
1.0
0.1
nd
nd
0.6
0.4
1.2
2.0
MeOHc
3b
MeOHc
MeOH
4b
5d
[bmim][Br]
[omim][Br]
[bmim][BF4]
[emim][HSO4]
[bmim][PF6]
[bmpl][NTf2]
[bmim][Br]
[emim][HSO4]
MeOH
6e
7
8
9
1.0 (1), 1.0 (2)
1.0
1.0
1.0
1.0
1.0
6.2 (1), 4.6 (2)
6.0
4.5
4.2
4.0
12.0
1.0 (1), 1.0 (2)
1.0
3.3 (1), 2.5 (2)
2.6
0.7
1.8
nd
1.5
10
11d
12
13a,b
14
15f
16f
[bmim][BF4]
[bmim][PF6]
[bmpl][NTf2]
20 (1), 20 (2)
24
1.7 (1), 1.9 (2)
1.7
0.3 (1), 0.3 (2)
0.2
a
b
c
d
e
f
Data from Ref. 9.
Data from Ref. 1c.
Products 2–4 were isolated as methyl esters, which were formed with participation of the solvent (MeOH).
Levulinic acid (1a) (entry 5) or methyl levulinate (1c) (entry 11) was added to a solution of Br2 in the IL.
A solution of Br2 in the IL was added to a solution of levulinic acid (1a) in the same IL.
The reaction was carried out in the presence of urea (1.5 equiv).19
selective synthesis of
materials for the preparation of biologically active compounds or
a-bromoketones which are useful starting
Cat
natural materials.
OH
OH
O
Br2
3
R
R
R
References and notes
H
H
5
6
1. (a) MacDonald, S. F. Can. J. Chem. 1974, 52, 3257–3258; (b) Zavyàlov, S. I.;
Zavozin, A. G. Izv. Akad. Nauk, Ser. Khim. 1987, 1796–1799 (Russ. Chem. Bull.
1987, 36, 1663–1666).; (c) Ha, H.-J.; Lee, S.-K.; Ha, Y.-J.; Park, J.-W. Synth.
Commun. 1994, 24, 2557–2562; (d) Zavyàlov, S. I.; Kravchenko, N. E.; Ezhova, G.
I.; Kulikova, L. B.; Zavozin, A. G.; Dorofeeva, O. V. Khim.-Pharm. Zh. 2007, 41, 45–
48 (Pharm. Chem. J. 2007, 41, 105–108).
2. (a) Mironov, A. F. Photodynamic Therapy of Cancer, In Advances in Porphyrin
Chemistry (in Russian), St. Petersburg, 1997; Vol. 1, pp 357–373.; (b) Fukuda, H.;
Casas, A.; Batlle, A. Int. J. Biochem. Cell Biol. 2005, 37, 272–276; (c) Dickson, E. F.
G.; Kennedy, J. C.; Pottier, R. H.. In Comprehensive Series in Photochemistry &
Photobiology; Patrice, T., Ed.; Royal Society of Chemistry: Cambridge, 2003; Vol.
2, p 83; (d) Friesen, S. A.; Hjortland, G. O.; Madsen, S. J.; Hirschberg, H.;
Engebraten, O.; Nesland, J. M.; Peng, Q. Int. J. Oncol. 2002, 21, 577–582; (e) Peng,
Q.; Warloe, T.; Berg, K.; Moan, J.; Kongshaug, M.; Giercksky, K. E.; Nesland, J. M.
Cancer 1997, 79, 2282–2308.
3. (a) Fritsch, C.; Kalka, K.; Ruzicka, T.; Goerz, G. Skin Pharmacol. Appl. Skin Physiol.
1998, 11, 172–173; (b) Kriegmair, M.; Baumgartner, R.; Knuchel, R.; Stepp, H.;
Hofstadter, F.; Hofstetter, A. J. Urol. 1996, 155, 105–109; (c) Jeffes, E. W.;
McCullough, J. L.; Weinstein, G. D.; Fergin, P. E.; Nelson, J. S.; Shull, T. F.;
Simpson, K. R.; Bukaty, L. M.; Hoffman, W. L.; Fong, N. L. Arch. Dermatol. 1997,
133, 727–732; (d) Szeimies, R. M. Dermatol. Clin. 2007, 25, 89; (e) Morton, C. A.
Dermatol. Clin. 2007, 25, 81; (f) Lopez, R. F. V.; Lange, N.; Guy, R.; Bentley, M. V.
L. B. Adv. Drug Delivery Rev. 2004, 56, 77–94; (g) Fotinos, N.; Campo, M. A.;
Popowycz, F.; Gurny, R.; Lange, N. Photochem. Photobiol. 2006, 82, 994–1015.
4. (a) Robinson, D. J.; Bruijn, H. S.; Star, W. M.; Sterenborg, H. Photochem.
Photobiol. 2003, 77, 319–323; (b) Baumgartner, R.; Stepp, H. G. Proc. SPIE-Int.
Soc. Opt. Eng. 1999, 122, 4166.
An
1 IL
Scheme 1. Establishment of an equilibrium between enols 5 and 6 in ionic liquids.
Another feasible explanation relies on the known fact21 that the
enolization of ketones is accelerated significantly in the presence of
nitrogen-based cations. The literature data shows that both induc-
tive effects and through-space electrostatic interactions of cations
with the carbonyl group are responsible for this acceleration.21 It is
likely that ionic liquids may exert a similar effect on the enoliza-
tion of ketones thereby establishing an equilibrium between enols
5 and 6 which should be shifted towards the thermodynamically
more stable internal enol 6 thereby facilitating the formation of
3-bromo derivatives 3 (Scheme 1).
The latter assumption also explains the faster bromination of 1
in ionic liquids in comparison with organic solvents (Table 1, com-
pare entries 1–4, 13 and entries 5–12, 14). In the presence of urea,
which coordinates to the oxygen sites of 1 via hydrogen bonding
and competes with or hinders electrostatic interactions with the
ionic liquid, the bromination of 1a proceeds more slowly affording
5-bromolevulinic acid 2a (Table 1, entries 15 and 16). Furthermore,
the urea can form a complex with Br2, which due to steric hin-
drance, favours reaction at position 5 of levulinic acid (1a).22
Thus, we have found that ionic liquids strongly influence the
regioselectivity in the bromination of methyl ketones such as lev-
ulinic acid and its esters. This process can be applied to the regio-
5. Rebeiz, C. A. Chem. Week 1984, 135, 34–36.
6. Rebeiz, C. A.; Juvic, J. A.; Rebeiz, C. C. Pestic. Biochem. Physiol. 1988, 30, 11–27.
7. Awa, Y.; Iwai, N.; Ueda, T.; Suzuki, K.; Asano, S.; Yamagishi, J.; Nagai, K.; Wachi,
M. Biosci. Biotechnol. Biochem. 2005, 69, 1721–1725.
8. Gouault, N.; Cupif, J.-F.; Amoros, M.; David, M. J. Chem. Soc., Perkin Trans. 1 2002,
2234–2236.
9. Manny, A. J.; Kjelleberg, S.; Kumar, N.; Naresh, N.; de Nys, R.; Read, R. W.;
Steinberg, P. Tetrahedron 1997, 53, 15813–15826.