Communication
ChemComm
F. Karaki, Y. Hatakeyama, Y. Koike, I. Kii and T. Hosoya,
Chem. Commun., 2019, 55, 3556; (n) K. Adachi, T. Meguro,
Y. Sakata, K. Igawa, K. Tomooka, T. Hosoya and S. Yoshida, Chem.
Commun., 2020, 56, 9823; (o) N. Makio, T. Kuribara, K. Adachi,
Y. Hatakeyama, T. Meguro, Y. Sakata, K. Igawa, K. Tomooka,
T. Hosoya and S. Yoshida, Chem. Commun., 2020, 56, 11449.
4 (a) H. Staudinger and J. Meyer, Helv. Chim. Acta, 1919, 2, 635;
(b) E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007;
(c) S. S. van Berkel, M. B. van Eldijk and J. C. M. van Hest,
Angew. Chem., Int. Ed., 2011, 50, 8806; (d) T. Meguro, S. Yoshida
and T. Hosoya, Chem. Lett., 2017, 46, 473; (e) T. Meguro,
N. Terashima, H. Ito, Y. Koike, I. Kii, S. Yoshida and T. Hosoya,
Chem. Commun., 2018, 54, 7904; ( f ) C. Bednarek, I. Wehl, N. Jung,
In summary, we have accomplished nucleophilic transfor-
mations of diverse azides through phosphazide formation.
Good stability of the phosphazide intermediates realized
reduction of esters by LAH and addition reaction of aldehydes
with organometallic reagents to provide a wide variety of azido-
substituted alcohols. Further studies to examine detailed prop-
erties of phosphazides, especially equilibrium liberation of
azides, and to expand the applicability of the azide protection
method are underway in our group.
The authors thank Dr Takashi Niwa (RIKEN, Center for
Biosystems Dynamics Research (BDR)) and Dr Yuki Sakata
(Tokyo Medical and Dental University) for HRMS analyses
and Assoc. Prof. Dr Hiroki Tanimoto for helpful discussions.
This work was supported by JSPS KAKENHI Grant Numbers
JP19K05451 (C; S. Y.) and JP18H02104 (B; T. H.); the Naito
Foundation (S. Y.); the Japan Agency for Medical Research and
Development (AMED) under Grant Number JP20am0101098
(Platform Project for Supporting Drug Discovery and Life
Science Research, BINDS); and the Cooperative Research
Project of Research Center for Biomedical Engineering.
¨
U. Schepers and S. Brase, Chem. Rev., 2020, 120, 4301.
5 (a) F. Rolla, J. Org. Chem., 1982, 47, 4327; (b) S. N. Maiti, P. Spevak
and A. V. N. Reddy, Synth. Commun., 1988, 18, 1201; (c) G. V. Reddy,
G. V. Rao and D. S. Iyengar, Tetrahedron Lett., 1999, 40, 3937;
(d) A. M. Salunkhe, P. V. Ramachandran and H. C. Brown, Tetra-
hedron, 2002, 58, 10059; (e) A. Kamal, N. Shankaraiah,
N. Markandeya and C. S. Reddy, Synlett, 2008, 1297; ( f ) A. Kamal,
N. Markandeya, N. Shankaraiah, C. R. Reddy, S. Prabhakar,
C. S. Reddy, M. N. Eberlin and L. S. Santos, Chem. – Eur. J., 2009,
15, 7215; (g) T. Maegawa, T. Takahashi, M. Yoshimura, H. Suzuka,
Y. Monguchi and H. Sajiki, Adv. Synth. Catal., 2009, 351, 2091.
6 J. H. Boyer, J. Am. Chem. Soc., 1951, 73, 5865.
7 For reactions of azides with organometallic reagents, see:
(a) P. A. S. Smith, C. D. Rowe and L. B. Bruner, J. Org. Chem.,
1969, 34, 3430; (b) D. H. Sieh, D. J. Wilbur and C. J. Michejda, J. Am.
Chem. Soc., 1980, 102, 3883; (c) B. M. Trost and W. H. Pearson,
J. Am. Chem. Soc., 1981, 103, 2483; (d) B. M. Trost and W. H. Pearson,
J. Am. Chem. Soc., 1983, 105, 1054; (e) K. Nishiyama and
N. Tanaka, J. Chem. Soc., Chem. Commun., 1983, 1322;
( f ) R. H. Smith, Jr. and C. J. Michejda, Synthesis, 1983, 476;
(g) G. W. Kabalka and G. Li, Tetrahedron Lett., 1997, 38, 5777;
(h) A. Nakhai, B. Stensland, P. H. Svensson and J. Bergman, Eur.
J. Org. Chem., 2010, 6588; (i) A. A. Suleymanov, R. Scopelliti,
F. F. Tirani and K. Severin, Org. Lett., 2018, 20, 3323; ( j) S. Graßl,
J. Singer and P. Knochel, Angew. Chem., Int. Ed., 2020, 59, 335.
8 For our recent azide chemistry, see: (a) S. Yoshida, S. Goto,
Y. Nishiyama, Y. Hazama, M. Kondo, T. Matsushita and
T. Hosoya, Chem. Lett., 2019, 48, 1038; (b) H. Takemura, S. Goto,
T. Hosoya and S. Yoshida, Chem. Commun., 2020, 56, 15541;
(c) T. Meguro, Y. Sakata, T. Morita, T. Hosoya and S. Yoshida, Chem.
Commun., 2020, 56, 4720; (d) N. Terashima, Y. Sakata, T. Meguro,
T. Hosoya and S. Yoshida, Chem. Commun., 2020, 56, 14003;
(e) S. Yoshida, Y. Sakata, Y. Misawa, T. Morita, T. Kuribara, H. Ito,
Y. Koike, I. Kii and T. Hosoya, Chem. Commun., 2021, 57, 899.
9 T. Meguro, S. Yoshida, K. Igawa, K. Tomooka and T. Hosoya,
Org. Lett., 2018, 20, 4126.
Conflicts of interest
There are no conflicts to declare.
Notes and references
¨
1 (a) S. Brase, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem.,
¨
Int. Ed., 2005, 44, 5188; (b) S. Brase and K. Banert, Organic Azides:
Syntheses and Applications, John Wiley & Sons, Ltd, Chichester, 2010;
(c) H. Tanimoto and K. Kakiuchi, Nat. Prod. Commun., 2013, 8, 1021;
(d) K. Banert, Synthesis, 2016, 48, 2361; (e) D. Huang and G. Yan, Adv.
Synth. Catal., 2017, 359, 1600; ( f ) S. Yoshida, Org. Biomol. Chem.,
2020, 18, 1550; (g) Z.-K. Liu, Q.-Q. Zhao, Y. Gao, Y.-X. Hou and
X.-Q. Hu, Adv. Synth. Catal., 2020, 363, 411.
2 (a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596;
(c) M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952;
(d) A. Mandoli, Molecules, 2016, 21, 1174.
3 (a) N. J. Agard, J. A. Prescher and C. R. Bertozzi, J. Am. Chem. Soc.,
2004, 126, 15046; (b) J. A. Codelli, J. M. Baskin, N. J. Agard and
C. R. Bertozzi, J. Am. Chem. Soc., 2008, 130, 11486; (c) X. Ning, J. Guo,
M. A. Wolfert and G.-J. Boons, Angew. Chem., Int. Ed., 2008, 47, 2253;
(d) A. A. Poloukhtine, N. E. Mbua, M. A. Wolfert, G.-J. Boons and
V. V. Popik, J. Am. Chem. Soc., 2009, 131, 15769; (e) J. Dommerholt,
S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T. Rutjes,
J. C. M. van Hest, D. J. Lefeber, P. Friedl and F. L. van Delft,
Angew. Chem., Int. Ed., 2010, 49, 9422; ( f ) J. C. Jewett,
E. M. Sletten and C. R. Bertozzi, J. Am. Chem. Soc., 2010,
132, 3688; (g) S. Yoshida, Y. Hatakeyama, K. Johmoto, H. Uekusa
and T. Hosoya, J. Am. Chem. Soc., 2014, 136, 13590; (h) R. Ni,
N. Mitsuda, T. Kashiwagi, K. Igawa and K. Tomooka, Angew. Chem.,
Int. Ed., 2014, 54, 1190; (i) R. R. Ramsubhag and G. B. Dudley,
Org. Biomol. Chem., 2016, 14, 5028; ( j) K. Kaneda, R. Naruse and
S. Yamamoto, Org. Lett., 2017, 19, 1096; (k) E. G. Burke, B. Gold,
T. T. Hoang, R. T. Raines and J. M. Schomaker, J. Am. Chem. Soc.,
10 For our organophosphorus chemistry, see: (a) S. Yoshida, K. Igawa
and K. Tomooka, J. Am. Chem. Soc., 2012, 134, 19358; (b) S. Yoshida
and T. Hosoya, Chem. Lett., 2013, 42, 583; (c) Y. Nishiyama,
Y. Hazama, S. Yoshida and T. Hosoya, Org. Lett., 2017, 19, 3899;
(d) Y. Nishiyama, S. Kamada, S. Yoshida and T. Hosoya, Chem. Lett.,
2018, 47, 1216; (e) Y. Nishiyama, T. Hosoya and S. Yoshida,
Chem. Commun., 2020, 56, 5771.
11 Alcohol 6a was not obtained when triphenylphosphine was used
instead of Amphos. Treatment of azide 1a with tri(t-butyl)
phosphinonium tetrafluoroborate and triethylamine followed by
LiAlH4 reduction and subsequent deprotection with elemental
sulfur furnished alcohol 6a in 61% yield.
12 For transformations of carbonyl group without damaging azido
group, see: (a) S. Hanessian, R. R. Vakiti, S. Dorich, S. Banerjee,
ˆ
F. Lecomte, J. R. DelValle, J. Zhang and B. Deschenes-Simard,
Angew. Chem., Int. Ed., 2011, 50, 3497; (b) S. Hanessian,
¨
ˆ
2017, 139, 8029; (l) C. Lis, S. Rubner, C. Grost, R. Hoffmann,
D. Knappe and T. Berg, Chem. Eur. J, 2018, 24, 13762;
R. R. Vakiti, S. Dorich, S. Banerjee and B. Deschenes-Simard,
–
J. Org. Chem., 2012, 77, 9458; (c) K. Morihiro, N. Ankenbruck,
B. Lukasak and A. Deiters, J. Am. Chem. Soc., 2017, 139, 13909.
(m) S. Yoshida, T. Kuribara, H. Ito, T. Meguro, Y. Nishiyama,
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 6062–6065 | 6065