R-aryl allenamides 7couldbeemployedinanimino-Nazarov
cyclization cascade through Brønsted acid activation.19
This electrophilic activation could give amido-pentadienyl
cation 8, which would undergo an electrocyclization
to afford 2-amido-allyl cation 9. It is noteworthy that a
distinct advantage in achieving a successful imino-Nazarov
cyclization is the synthetically useful enamide func-
tionality20 in the end product 10.
Scheme 2. An Approach to Imino-Nazarov Cyclization
We reasoned that unlike amino-pentadienyl cation
5, the electrocyclization of 7 could be more favored
given the reduced ability of an N-acyl nitrogen atom
to stabilize cations relative to an amino group. Such
rationalization would find prevalent support in the
related chemistry of vinyl N-acyl iminium ions21 and
aza-Prins cyclizations.22 However, after many attempts,
the Brønsted acid activation failed because we were
unable to control and overtake the hydrolysis pathway
reactions7a and, recently, with enamine-iminium ions.7b,c
There are examples in which stabilization of the pen-
tadienyl cation is assisted by the presence of an amino
or amide substituent, albeit not a formal imino-Nazarov
cyclization. Cha’s8 earlier work on cephalotaxine synthe-
sis and reports by Occhiato/Prandi,9 Frontier,10 and
Flynn11 employing ynamides, and recently by West12 in
a clever usage of allenamides, represent such elegant
cases. The challenge in developing a successful imino-
Nazarov cyclization is to overcome the propensity of the
2-amino-allyl cation 6 to ring open in favor of amino-
pentadienyl cation 5, which receives greater stabilization
from the amino nitrogen atom.13 We wish to commu-
nicate here our solution to this challenge through gold(I)
activation of allenamides.
(15) Also see: (a) Standen, P. E.; Kimber, M. C. Curr. Opin. Drug
Discovery Dev. 2010, 13, 645. (b) Deagostino, A.; Prandi, C.; Tabasso,
S.; Venturello, P. Molecules 2010, 15, 2667. (c) For general reviews on
allenes, see: Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004; Vols. 1 and 2.
(16) Given the large volume, for reports on allenamide chemistry just
in 2012, see: (a) Reference 12. (b) Du, Y.; Krenske, E. H.; Antoline, J. E.;
Lohse, A. G.; Houk, K. N.; Hsung, R. P. J. Org. Chem. 2012, ASAP
Article (DOI:10.1021/jo3011792). (c) Singh, S.; Elsegood, M. R. J.;
Kimber, M. C. Synlett 2012, 23, 565. (d) Heffernan, S. J.; Carbery,
D. R. Tetrahedron Lett. 2012, 53, 5180. (e) Hayashi, R.; Ma, Z.-X.;
Hsung, R. P. Org. Lett. 2012, 14, 252. (f) X.-X.; Zhu, L.-L.; Zhou, W.;
Chen, Z. Org. Lett. 2012, 14, 436. (g) Husinec, S.; Petkovic, M.; Savic, V.;
ꢀ
ꢀ
Simic, M. Synthesis 2012, 399. (h) Suarez-Pantiga, S.; Hernandez-Dıaz,
ꢀ
C.; Piedrafita, M.; Rubio, E.; Gonzaleza, J. M. Adv. Synth. Catal. 2012,
354, 1651. (i) Faustino, H.; Paloma Bernal, P.; Luis Castedo, L.;
ꢀ
~
Fernando Lopez, F.; Mascarenas, J. L. Adv. Synth. Catal. 2012, 354,
1658. (j) Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-
Our long-standing interest in allenamides,14ꢀ16 and in par-
ticular their electrophilic activations,17,18 led us to explore
their potential use in this underdeveloped aspect of the
Nazarov cyclization. As shown in Scheme 2, R-vinyl or
€
ꢀ
Siguenza, J.; Dıez, E.; Alonso, I.; Fernandez, R.; Lassaletta, J. M.;
ꢀ
~
Lopez, F.; Mascarenas, J. L. J. Am. Chem. Soc. 2012, 134, 14322. (k)
Broggini, G.; Borsini, E.; Fasana, A.; Poli, G.; Liron, F. Eur. J. Org.
Chem. 2012, 3617.
(17) For an account, see: Lohse, A. G.; Hsung, R. P. Chem.;Eur. J.
2011, 17, 3812.
(18) (a) Via oxidation: Xiong, H.; Hsung., R. P.; Berry, C. R.;
Rameshkumar, C. J. Am. Chem. Soc. 2001, 123, 7174. (b) Via Brønsted
acid: Berry, C. R.; Hsung, R. P.; Antoline, J. E.; Petersen, M. E.;
Rameshkumar, C.; Nielson, J. A. J. Org. Chem. 2005, 70, 4038. (c) Via
halogen: Hayashi, R.; Walton, M. C.; Hsung, R. P.; Schwab, J.; Yu, X.
Org. Lett. 2010, 12, 5768.
(19) For a Brønsted acid activation of allenol ethers, see: (a) Wu,
Y.-K.; West, F. G. J. Org. Chem. 2010, 75, 5410. For an oxidative
activation, see: (b) Spencer, W. T., III; Levin, M. D.; Frontier, A. J. Org.
Lett. 2011, 13, 414. (c) Malona, J. A.; Cariou, K.; Frontier, A. J. J. Am.
Chem. Soc. 2009, 131, 7560. For a gold activation, see: (d) Zhang, L.;
Wang, S. J. Am. Chem. Soc. 2006, 128, 1442.
(20) For a leading review on enamides, see: (a) Carbery, D. R. Org.
Biomol. Chem. 2008, 9, 3455. Also see: (b) Rappoport, Z. The Chemistry
of Functional Groups; John Wiley and Sons: New York, 1994. (c) (b)Tracey,
M. R.; Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.;
Zhang, Y. In Science of Synthesis, Houben-Weyl Methods of Molecular
Transformations; Weinreb, S. M., Ed.; Georg Thieme Verlag KG: Chapter
21.4, 2005.
(21) For reviews, see: (a) Maryanoff, B. E.; Zhang, H.-C.; Cohen,
J. H.; Turchi, I. J.; Maryanoff, C. Chem. Rev. 2004, 104, 1431. (b) Royer,
J.; Bonin, M.; Micouin, L. Chem. Rev. 2004, 104, 2311.
(5) For leading references on arrested-Nazarov, see: (a) Scadeng, O.;
Ferguson, M. J.; West, F. G. Org. Lett. 2011, 13, 114. (b) Rostami, A.;
Wang, Y.; Arif, A. M.; McDonald, R.; West, F. G. Org. Lett. 2007, 9,
703. (c) Song, D.; Rostami, A.; West, F. G. J. Am. Chem. Soc. 2007, 129,
12019. (d) White, T. D.; West, F. G. Tetrahedron Lett. 2005, 46, 5629.
(e) Giese, S.; Kastrup, L.; Stiens, D.; West, F. G. Angew. Chem., Int. Ed.
2000, 39, 1970. (f) Bender, J. A.; Arif, A. M.; West, F. G. J. Am. Chem.
Soc. 1999, 121, 7443.
(6) Also see: (a) Dhoro, F.; Tius, M. A. J. Am. Chem. Soc. 2005, 127,
12472. (b) Dhoro, F.; Kristensen, T. E.; Stockmann, V.; Yap, G. P. A.;
Tius, M. A. J. Am. Chem. Soc. 2007, 129, 7256. (c) Nair, V.; Bindu, S.;
Sreekumar, V.; Chiaroni, A. Org. Lett. 2002, 4, 2821.
(7) (a) Tius, M. A.; Chu, C. C.; Nieves-Colberg, R. Tetrahedron Lett.
2001, 42, 2419. (b) Bow, W. F.; Basak, A. K.; Jolit, A.; Vicic, D. A.; Tius,
M. A. Org. lett 2010, 12, 440. (c) Shimada, N.; Ashburn, B. O.; Basak,
A. K.; Bow, W. F.; Vicic, D. A.; Tius, M. A. Chem. Commun. 2010, 46,
3774. For an example postulating an imino-Nazarov reaction pathway,
ꢀ
see: (d) Suarez-Pantiga, S.; Rubio, E.; Alvarez-Rua, C.; Gonzalez, J. M.
Org. Lett. 2009, 11, 13.
(8) Kim, S. H.; Cha, J. K. Synthesis 2000, 2113.
(9) (a) Larini, P.; Guarna, A.; Occhiato, E. G. Org. Lett. 2006, 8, 781.
(b) Occhiato, E. G.; Prandi, C.; Ferrali, A.; Guarna, A. J. Org. Chem.
2005, 70, 4542.
(10) (a) Bitar, A. Y.; Frontier, A. J. Org. Lett. 2009, 11, 49. (b)
Malona, J. A.; Colbourne, J. M.; Frontier, A. J. Org. Lett. 2006, 8, 5661.
(11) Kerr, D. J.; Miletic, M.; Chaplin, J. H.; White, J. M.; Flynn, B. L.
Org. Lett. 2012, 14, 1732.
(12) Wu, Y.-K.; Niuz, T.; West, F. G. Chem. Commun. 2012, 48,
9186.
(13) Smith, D. A.; Ulmer, C. W., II. J. Org. Chem. 1997, 62, 5110.
(14) For a leading review on allenamide chemistry, see: Hsung, R. P.;
Wei, L.-L.; Xiong, H. Acc. Chem. Res. 2003, 36, 773.
(22) For reviews, see: Hiemstra, H.; Speckamp, W. N. In Compre-
hensive Organic Synthesis; Brossi, A., Ed.; Academic Press: San Diego,
1988; Vol. 2, pp 271ꢀ339. (b) Hanessian, S.; Tremblay, M.; Marzi, M.;
Del Valle, J. R. J. Org. Chem. 2005, 70, 5070.
(23) For reviews, see: (a) Boorman, T. C.; Larrosa, I. Chem. Soc. Rev.
2011, 40, 1910. (b) Bandini, M. Chem. Soc. Rev. 2011, 40, 1358.
€
(c) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. (d) Furstner,
A. Chem. Soc. Rev. 2009, 38, 3208. (e) Gorin, D. J.; Sherry, B. D.; Toste,
€
F. D. Chem. Rev. 2008, 108, 3351. (f) Furstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410. (g) Hashmi, A. S. K. Chem. Rev. 2007,
107, 3180.
Org. Lett., Vol. 14, No. 22, 2012
5737