1646 J. Am. Chem. Soc., Vol. 121, No. 8, 1999
Persson et al.
Scheme 2. Ruthenium-Catalyzed Racemization of
(+)-(R)-3a
Scheme 3
The ruthenium-catalyzed racemization of (+)-(R)-3 was then
combined with an enzyme-catalyzed transesterification using
Candida antarctica component B lipase16 supported on acrylic
resin (commercially available under the trade name Novozym
435). This enzyme has been successfully employed in esteri-
fications,17 transesterifications,18 and hydrolysis,19 perhydroly-
sis,20 and aminolysis21 of esters. It has been shown to possess
a very high thermostability, tolerating temperatures as high as
70-80 °C,17 which makes this enzyme most suitable for our
purposes. The use of catalyst 1 in combination with the enzyme
and different acyl donors gave poor results with decreased
activity of the enzyme, and furthermore, the rapid racemization
with this catalyst could not be reproduced in the presence of
the enzyme. On the other hand, combination of catalyst 2 with
the enzyme and the acyl donor worked better. Using vinyl
acetate as the acyl donor,22 a complete conversion of the alcohol
was achieved within 17 h. However, only 50% yield of the
acetate was obtained, and the rest was oxidized starting material
(Scheme 3 and Table 1, entry 1). The use of isopropenyl acetate,
from which acetone is formed in the acylation step, showed
the same phenomenon but to a lower extent than for vinyl
acetate. In this case, 72% of the substrate was converted to (R)-
1-phenylethyl acetate ((R)-4), and the remaining 28% was
oxidized (Table 1, entry 2).
a Reaction conditions: 2 mol % 1, 10 mol % NaOH, 4 h, or 2 mol
% 2, 24 h.
matic resolution have been reported,6-8 and recently the use of
transition metals for substrate racemization has attracted some
interest.6e,9
We have been involved in the combination of enzyme and
transition metal catalysis,9c,10 and in a preliminary communica-
tion we recently reported on an efficient enzymatic resolution
of 1-phenylethanol and 1-indanol coupled with ruthenium-
catalyzed racemization of the substrate.9c One problem with the
latter procedure was that 1 equiv of the corresponding ketone
(acetophenone and indanone, respectively) was required for a
good result. We have now overcome this problem, and here
we give a full account of our new results and discuss the scope
and limitations of the reaction.
Results and Discussion
During our studies on ruthenium-catalyzed hydrogen-transfer
reactions employing catalyst 1 and 2,11-13 we had observed that
alcohols undergo fast isomerization at the R-carbon leading to
racemization or epimerization.14 With the aim of developing a
DKR of alcohols, we studied the isomerization of (+)-(R)-3
with catalysts 1 and 2 (Scheme 2). Both of the catalysts were
able to catalyze the complete racemization of (+)-(R)-3, 1 with
a higher rate than 2.15 Although 1 is faster than 2, it requires
the presence of NaOH, which may interfere with the enzyme.
To avoid the problem with the oxidation associated with
alkenyl acetates as acyl donors, we turned our attention to other
(15) A highly efficient ruthenium catalyst for the racemization of
secondary alcohols was reported recently: Koh, J. H.; Jeong, H. M.; Park,
J. Tetrahedron Lett. 1998, 39, 5545. For a review on racemization of
optically active compounds, see: Ebbers, E. J.; Ariaans, G. J. A.; Houbiers,
J. P. M.; Bruggink, A.; Zwanenburg, B. Tetrahedron 1997, 53, 9417.
(16) X-ray structures of this enzyme have been solved recently: (a)
Uppenberg, J.; Hansen, M. T.; Patkar, S.; Jones, T. A. Structure 1994, 2,
293. (b) Uppenberg, J.; O¨ hrner, N.; Norin, M.; Hult, K.; Kleywegt, G. J.;
Patkar, S.; Waagen, V.; Anthonsen, T.; Jones, T. A. Biochemistry 1995,
34, 16838.
(17) (a) Arroyo, M.; Sinisterra, J. V. J. Org. Chem. 1994, 59, 4410. (b)
Bjo¨rkling, F.; Godtfredsen, S. E.; Kirk, O. J. Chem. Soc., Chem. Commun.
1989, 934.
(8) (a) Chen, S. T.; Huang, W.-H.; Wang, K.-T. J. Org. Chem. 1994,
59, 7580. (b) Um, P.-J.; Drueckhammer, D. G. J. Am. Chem. Soc. 1998,
120, 5605. (c) van der Deen, H.; Cuiper, A. D.; Hof, R. P.; van Oeveren,
A.; Feringa, B. L.; Kellog, R. M. J. Am. Chem. Soc. 1996, 118, 3801.
(9) (a) Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37, 1859.
(b) Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.; Harris,
W. Tetrahedron Lett. 1996, 37, 7623. (c) Larsson, A. L. E.; Persson, B.
A.; Ba¨ckvall, J. E. Angew. Chem., Int. Ed. Engl. 1997, 36, 1211. (d) Reetz,
M. T.; Schimossek, K. Chimia 1996, 50, 668.
(10) (a) Schink, H. E.; Ba¨ckvall, J. E. J. Org. Chem. 1992, 57, 1588; J.
Org. Chem. 1992, 57, 6082 (correction). (b) Ba¨ckvall, J. E.; Gatti, R.;
Schink, H. E. Synthesis 1993, 343. (c) Gatti, R. P. G.; Larsson, A. L. E.;
Ba¨ckvall, J. E. J. Chem. Soc., Perkin Trans. 1 1997, 4, 577. (d) Yoshisaki,
H.; Ba¨ckvall, J. E. J. Org. Chem. 1998, 63, 9339.
(11) (a) Chowdhury, R. L.; Ba¨ckvall, J. E. J. Chem. Soc., Chem. Commun.
1991, 1063. (b) Ba¨ckvall, J. E.; Andreasson, U. Tetrahedron Lett. 1993,
34, 5459. (c) Ba¨ckvall, J. E.; Chowdhury, R. L.; Karlsson, U.; Wang, G.-
Z. In PerspectiVes in Coordination Chemistry; Williams, A. F., Floriani,
C., Merbach, A. E., Eds.; Verlag: Basel, 1992; p 463.
(12) (a) Wang, G.-Z.; Ba¨ckvall, J. E. J. Chem. Soc., Chem. Commun.
1992, 337. (b) Wang, G.-Z.; Andreasson, U.; Ba¨ckvall, J. E. J. Chem. Soc.,
Chem. Commun. 1994 1037. (c) Almeida, M. L. S.; Kocˇovsky´, P.; Ba¨ckvall,
J. E. J. Org. Chem. 1996, 61, 6587. (d) Almeida, M. L. S.; Beller, M.;
Wang, G.-Z.; Ba¨ckvall, J. E. Chem. Eur. J. 1996, 2, 1533.
(18) (a) Anthonsen, H. W.; Hoff, B. H.; Anthonsen, T. Tetrahedron:
Asymmetry 1995, 6, 3015. (b) Hoff, B. H.; Anthonsen, H. W.; Anthonsen,
T. Tetrahedron: Asymmetry 1996, 7, 3187. (c) Sundram, H.; Golebiowski,
A.; Johnson, C. R. Tetrahedron Lett. 1994, 35, 6975. (d) Orrenius, C.;
Mattson, A.; Norin, T.; O¨ hrner, N.; Hult, K. Tetrahedron: Asymmetry 1994,
5, 1363. (e) Orrenius, C.; O¨ hrner, N.; Rotticci, D.; Mattson, A.; Hult, K.;
Norin, T. Tetrahedron: Asymmetry 1995, 6, 1217. (f) Orrenius, C.; Norin,
T.; Hult, K.; Carrea, G. Tetrahedron: Asymmetry 1995, 6, 3023. (g) Mattson,
A.; Orrenius, C.; O¨ hrner, N.; Unelius, C. R.; Hult, K.; Norin, T. Acta Chem.
Scand. 1996, 50, 918. (h) O¨ hrner, N.; Martinelle, M.; Mattson, A.; Norin,
T.; Hult, K. Biocatalysis 1994, 9, 105. (i) Tanaka, K.; Osuga, H.; Suzuki,
H.; Shogase, Y.; Kitahara, Y. J. Chem. Soc., Perkin Trans. 1 1998, 935. (j)
Uenishi, J.; Hiraoka, T.; Hata, S.; Nishiwaki, K.; Yonemitsu, O.; Nakamura,
K.; Tsukube, H. J. Org. Chem. 1998, 63, 2481. (k) Danieli, B.; Lesma, G.;
Luisetti, M. Tetrahedron 1997, 53, 5855. (l) Mattson, A.; O¨ hrner, N.; Hult,
K.; Norin, T. Tetrahedron: Asymmetry 1993, 4, 925.
(19) (a) Johnson, C. R.; Bis, S. J. Tetrahedron Lett. 1992, 33, 7287. (b)
Partali, V.; Waagen, V.; Alvik, T.; Anthonsen, T. Tetrahedron: Asymmetry
1993, 4, 961. (c) Waagen, V.; Hollingsæter, I.; Partali, V.; Thorstad, O.;
Anthonsen, T. Tetrahedron: Asymmetry 1993, 4, 2265. (d) Chapman, D.
T.; Crout, D. H. G.; Mahmoudian, M.; Scopes, D. I. C.; Smith, P. W. Chem.
Commun. 1996, 2415.
(20) Ru¨sch gen Klaas, M.; Warwel, S. Synth. Commun. 1998, 251.
(21) (a) Conde, S.; Lo´pez-Serrano, P.; Fierros, M.; Biezma, M. I.;
Mart´ınez, A.; Rodr´ıguez-Franco, M. I. Tetrahedron 1997, 53, 11745. (b)
de Castro, M. S.; Gago, J. V. S. Tetrahedron 1998, 54, 2877.
(22) (a) Castaing-Degueil, M.; de Jeso, B.; Drouillard, S.; Maillard, B.
Tetrahedron Lett. 1987, 28, 953. (b) Wang, Y. F.; Lalonde, J. J.;
Momongam, M.; Bergbreiter, D. E.; Wong, C. H. J. Am. Chem. Soc. 1988,
110, 7200.
(13) This catalyst is readily prepared from Ru3(CO)12 and tetraphenyl
cyclopentadienone: Shvo, Y.; Menashe, N. Organometallics 1991, 10, 3885.
(14) (a) Chowdhury, R. L. Unpublished results from these laboratories.
(b) Andreasson, U.; Ba¨ckvall, J. E.; Chowdhury, R. L.; Wang, G. Z. Conf.
Abstr. OMCOS 7, Kobe, Japan, 1993; p 68. See also: Geneˆt, J. P.;
Ratovelomanana-Vidal V.; Pinel, C. Synlett 1993, 478.