6880
A. Nitta et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6876–6881
Table 3
CCR3 inhibiting activity of pyrrolidinyl phenylurea derivatives
O
N
R
N
H
N
H
F
Compds
R
IC50 (nM)
Compds
R
IC50 (nM)
Compds
R
IC50 (nM)
110
25
50
30
31
32
23
35
HO
O
O
O
26
27
44
51
36
37
50
HO
HO
HO
O
HO
9.9
1.7
190
O
O
HO
HO
HO
HO
O
28
29
12
24
33
34
28
71
38
39
110
44
O
O
O
N
O
O
O
O
O
N
H2N
O
(32: IC50 = 1.7 nM). Comparisons between 30, 31, and 32 revealed
that shorter substituent have better activity than longer ones.
Introduction of a hydroxyethoxyl substitution to the phenyl group
of 25 showed that the most suitable substitution position for CCR3
inhibitory activity is the 2-position, as in 32 (33: IC50 = 28 nM; 34:
IC50 = 71 nM). The hydroxyethoxyethoxyl group on 35 was not
effective (35: IC50 = 110 nM). Finally, in addition to the hydroxyalk-
oxyl groups, various hydrophilic substituents were examined
(36–39), but compounds with a dimethylaminoethoxyl group
(36), N,N-dimethylacetamide (37), methoxyethoxyl group (38), or
acetamide (39) did not show any improvement in activity over that
of 32 (36: IC50 = 50 nM; 37: IC50 = 190 nM; 38: IC50 = 44 nM; 39:
IC50 = 110 nM).
The most potent compound, 32, exhibited passable oral bio-
availability in cynomolgus monkeys (22%). Compound 32 did not
inhibit CCR1, CCR2, or CCR5 at a dose of 10 lM. Furthermore, the
effect of 32 on CC chemokine ligand 11 (CCL11/eotaxin)-induced
eosinophil degranulation was investigated as a functional assay.20
CCR3 antagonist 32 inhibited eosinophil-derived neurotoxin (EDN)
release from CCL11-induced human peripheral eosinophils in a
dose-dependent manner and had an IC50 value of 0.87 nM.
In conclusion, to improve CCR3 inhibitory activity and the
References and notes
1. Review Pease, J. E.; Horuk, R. Expert Opin. Ther. Pat. 2009, 19, 39.
2. Naya, A.; Kobayashi, K.; Ishikawa, M.; Ohwaki, K.; Saeki, T.; Noguchi, K.; Ohtake,
N. Bioorg. Med. Chem. Lett. 2001, 11, 1219.
3. Batt, D. G.; Houghton, G. C.; Santella, J. B., III; Wacker, D. A.; Welch, P. K.;
Orlovsky, Y. I.; Wadman, E. A.; Trzaskos, J. M.; Davies, P.; Decicco, C. P.; Carter,
P. H. Bioorg. Med. Chem. Lett. 2005, 15, 787.
4. Varnes, J. G.; Gardner, D. S.; Santella, J. B., III; Duncia, J. V.; Estrella, M.; Watson,
P. S.; Clark, C. M.; Ko, S. S.; Welch, P.; Covington, M.; Stowell, N.; Wadman, E.;
Davies, P.; Solomon, K.; Newton, R. C.; Trainor, G. L.; Decicco, C. P.; Wacker, D.
A. Bioorg. Med. Chem. Lett. 2004, 14, 1645.
5. Dhanak, D.; Christmann, L. T.; Darcy, M. G.; Jurewicz, A. J.; Keenan, R. M.; Lee, J.;
Sarau, H. M.; Widdowson, K. L.; White, J. R. Bioorg. Med. Chem. Lett. 2001, 11,
1441.
6. Gong, L.; Hogg, J. H.; Collier, J.; Wilhelm, R. S.; Soderberg, C. Bioorg. Med. Chem.
Lett. 2003, 131, 3597.
7. Ting, P. C.; Lee, J. F.; Wu, J.; Umland, S. P.; Aslanian, R.; Cao, J.; Dong, Y.; Garlisi,
C. G.; Gilbert, E. J.; Huang, Y.; Jakway, J.; Kelly, J.; Liu, Z.; McCombie, S.; Shah, H.;
Tian, F.; Wan, Y.; Shih, N. Y. Bioorg. Med. Chem. Lett. 2005, 15, 1375.
8. Anderskewitz, R.; Bauer, R.; Bodenbach, G.; Gester, D.; Gramlich, B.;
Morschhauser, G.; Birke, F. Bioorg. Med. Chem. Lett. 2005, 15, 669.
9. Wacker, D. A.; Santella, J. B., III; Gardner, D. S.; Varnes, J. G.; Estrella, M.;
DeLucca, G. V.; Ko, S. S.; Tanabe, K.; Watson, P. S.; Welch, P. K.; Covington, M.;
Stowell, N.; Wadman, E.; Davies, P.; Solomon, K.; Newton, R. C.; Trainor, G. L.;
Friedman, S. M.; Decicco, C. P.; Duncia, J. V. Bioorg. Med. Chem. Lett. 2002, 12,
1785.
10. De Lucca, G. V.; Kim, U. T.; Johnson, C.; Vargo, B. J.; Welch, P. K.; Covington, M.;
Davies, P.; Solomon, K.; Newton, R. C.; Trainor, G. L.; Decicco, C. P.; Ko, S. S. J.
Med. Chem. 2002, 45, 3794.
bioavailability of lead compound 1,
a series of pyrrolidinyl
phenylurea derivatives was identified. The conversion of the pro-
line-urea-nortropane linker to pyrrolidine effectively increased
bioavailability. The ortho-substituent on the phenyl ring of the left
subunit was sufficient for antagonist activity. Finally, the introduc-
tion of a hydroxyethoxyl substituent at the 2-position of the phe-
nylurea moiety of the pyrrolidine derivative led to the successful
production of 32, which is a selective CCR3 antagonist and the
most potent in this series.
11. Sato, I.; Morihira, K.; Inami, H.; Kubota, H.; Morokata, T.; Suzuki, K.; Hamada,
N.; Iura, Y.; Nitta, A.; Imaoka, T.; Takahashi, T.; Takeuchi, M.; Ohta, M.;
Tsukamoto, S. Bioorg. Med. Chem. Lett. 2008, 16, 144.
12. Sato, I.; Morihira, K.; Inami, H.; Kubota, H.; Morokata, T.; Suzuki, K.; Iura, Y.;
Nitta, A.; Imaoka, T.; Takahashi, T.; Takeuchi, M.; Ohta, M.; Tsukamoto, S.
Bioorg. Med. Chem. Lett. 2008, 16, 8607.
13. Sato, I.; Morihira, K.; Inami, H.; Kubota, H.; Morokata, T.; Suzuki, K.; Ohno, K.;
Iura, Y.; Nitta, A.; Imaoka, T.; Takahashi, T.; Takeuchi, M.; Ohta, M.; Tsukamoto,
S. Bioorg. Med. Chem. Lett. 2009, 17, 5989.