On the basis of the obtained results, a tentative transition state,
dominated by a repulsion among the ethyl group of (R,R)-6, the
o-substituent of the aryl iodide, and the alkyl group of the
secondary silane, was proposed.7 The reduced enantioselectivities
of m- and p-substituted aryl iodides as compared with the
o-substituted one can be attributed to the lack of steric effects
with the phosphoramidite ligand and secondary silanes.
In conclusion, we have described the first enantioselective
arylation of secondary silanes. TADDOL-based phosphora-
midite (R,R)-6 was found to be highly effective for palladium-
catalyzed asymmetric arylation of secondary silanes (up to
77%ee). Investigations evaluating the full scope of this reaction
are currently in progress.
7 For examples of enantioselective reaction of prochiral secondary
silanes, see: (a) Y. Yasutomi, H. Suematsu and T. Katsuki, J. Am.
Chem. Soc., 2010, 132, 4510; (b) D. R. Schmidt, S. J. O’Malley and
J. L. Leighton, J. Am. Chem. Soc., 2003, 125, 1190; (c) R. J. P.
Corriu and J. J. E. Moreau, J. Organomet. Chem., 1976, 120,
337.
8 (a) A. Kunai, T. Sakurai, E. Toyoda, M. Ishikawa and Y. Yamamoto,
Organometallics, 1994, 13, 3233; (b) R. Boukherroub, C. Chatgilialoglu
and G. Manuel, Organometallics, 1996, 15, 1508; (c) A. Iwata,
Y. Toyoshima, T. Hayashida, T. Ochi, A. Kunai and J. Ohshita,
J. Organomet. Chem., 2003, 667, 90; (d) A. Kunai and J. Ohshita,
J. Organomet. Chem., 2003, 686, 3; (e) J. Ohshita, R. Taketsugu,
Y. Nakahara and A. Kunai, J. Organomet. Chem., 2004, 689, 3258;
(f) P. Srithanakit and W. Chavasiri, Tetrahedron Lett., 2011, 52, 2505.
9 (a) Y. Yamanoi, J. Org. Chem., 2005, 70, 9607; (b) Y. Yamanoi and
H. Nishihara, Tetrahedron Lett., 2006, 47, 7157; (c) Y. Yamanoi and
H. Nishihara, J. Org. Chem., 2008, 73, 6671; (d) Y. Yamanoi,
T. Taira, J.-I. Sato, I. Nakamula and H. Nishihara, Org. Lett.,
2007, 9, 4543; (e) Y. Yamanoi and H. Nishihara, J. Synth. Org.
Chem., Jpn., 2009, 67, 778; (f) Y. Yabusaki, N. Ohshima, H. Kondo,
T. Kusamoto, Y. Yamanoi and H. Nishihara, Chem.–Eur. J., 2010,
16, 5581; (g) A. Lesbani, H. Kondo, J.-I. Sato, Y. Yamanoi and
H. Nishihara, Chem. Commun., 2010, 46, 7784; (h) A. Lesbani,
H. Kondo, Y. Yabusaki, M. Nakai, Y. Yamanoi and H. Nishihara,
Chem.–Eur. J., 2010, 16, 13519.
10 For other examples of metal-catalyzed arylation of hydrosilanes,
see: (a) M. Murata and Y. Masuda, J. Synth. Org. Chem., Jpn.,
2010, 68, 845; (b) C. Huang, N. Chernyak, A. S. Dudnik and
V. Gevorgyan, Adv. Synth. Catal., 2011, 353, 1285; (c) N. Iranpoor,
H. Firouzabadi and R. J. Azadi, J. Organomet. Chem., 2010,
695, 887; (d) M. Iizuka and Y. Kondo, Eur. J. Org. Chem., 2008,
1161; (e) M. Murata, H. Ohara, R. Oiwa, S. Watanabe and
Y. Masuda, Synthesis, 2006, 1771; (f) D. Karshtedt, A. T. Bell
and T. D. Tilley, Organometallics, 2006, 25, 4471; (g) A. Ochida,
S. Ito, T. Miyahara, H. Ito and M. Sawamura, Chem. Lett., 2006,
294; (h) W. Gu, S. Liu and R. B. Silverman, Org. Lett., 2002,
4, 4171.
11 Although we tested (S)-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a0]-
dinaphthalene-4-yl)bis[(1R)-1-phenylethyl]amine ((S,R,R)-22) and
(11aR)-10,11,12,13-tetrahydrodiindeno[7,1-de:1070-fg][1,3,2]dioxa-
phosphocin-5-bis[(R)-1-phenylethyl]amine (R,R,R)-23 as chiral
sources (purchased from STREM), the arylated product was
obtained in 25% yield, 2%ee and in 43% yield, 4%ee, respectively.
For the structures of (S,R,R)-22 and (R,R,R)-23, see ESIw.
12 For recent reviews highlighting the use of TADDOL-derived phos-
phoramide ligands in asymmetric synthesis, see: (a) H. W. Lam,
Synthesis, 2011, 2011; (b) H. Pellissier, Tetrahedron, 2008, 64, 10279.
13 For the absolute configuration of 1, see: N. Oka, M. Nakamura,
N. Soeda and T. Wada, J. Organomet. Chem., 2009, 694, 2171.
14 For reviews on monoligated Pd species in cross-coupling reactions,
see: (a) U. Christmann and R. Vilar, Angew. Chem., Int. Ed., 2005,
44, 366; (b) L. Xue and Z. Lin, Chem. Soc. Rev., 2010, 39, 1692.
15 The effect of varying the ratio of Pd source to ligand (R,R)-1 was
investigated. The results are summarized as follows: Pd: (R,R)-1 =
1 : 1 71% yield, 36%ee, Pd: (R,R)-1 = 1 : 1.5 92% yield, 36%ee,
and Pd: (R,R)-1 = 1 : 2 85% yield, 36%ee. The optimized ratio of
Pd: (R,R)-1 was determined to be 1 : 1.5. We therefore used this
ratio for all subsequent reactions.
We thank Ms Kimiyo Saeki and Dr Aiko Sakamoto, the
Elemental Analysis Center of The University of Tokyo, for
the elemental analysis measurements. The present work was
financially supported by Grant-in-Aids for Scientific Research
(C) (No. 24550221) and Scientific Research on Innovative
Areas ‘‘Coordination Programming’’ (area 2107, No. 21108002)
from the Ministry of Education, Culture, Sports, Science, and
Technology, Japan.
Notes and references
1 For reviews, see: (a) L.-W. Xu, L. Li, G.-Q. Lai and J.-X. Jiang,
Chem. Soc. Rev., 2011, 40, 1777; (b) M. Oestreich, Synlett, 2007,
1629; (c) G. L. Larson and E. Torres, J. Organomet. Chem., 1985,
293, 19; (d) M. Oestreich, Chem.–Eur. J., 2006, 12, 30.
2 (a) L. H. Sommer, C. L. Frye, G. A. Parker and K. W. Michael,
J. Am. Chem. Soc., 1964, 86, 3271; (b) R. J. P. Corriu and
G. F. Lanneau, Tetrahedron Lett., 1971, 12, 2771; (c) A. Holt,
A. W. P. Jarvie and G. J. Jervis, J. Chem. Soc., Perkin Trans. 2,
1973, 114; (d) M. Oestreich, U. K. Schmid, G. Auer and M. Keller,
Synthesis, 2003, 2725; (e) A. H. Djerourou and L. Blaneo, Tetra-
hedron Lett., 1991, 32, 6325; (f) T. Fukui, T. Kawamoto and
A. Tanaka, Tetrahedron: Asymmetry, 1994, 5, 73; (g) P. Huber,
S. Bratovanov, S. Bienz, C. Syldatk and M. Pietzsch, Tetrahedron:
Asymmetry, 1996, 7, 69; (h) K. Kobayashi, T. Kato, M. Unno and
S. Masuda, Bull. Chem. Soc. Jpn., 1997, 70, 1393; (i) A. Kawachi,
H. Maeda, K. Mitsudo and K. Tamao, Organometallics, 1999,
18, 4530; (j) P. Jankowski, E. Schaumann, J. Wicha, A. Zarecki,
G. Adiwidjaja and M. Asztemborska, Chem. Commun., 2000, 2030.
3 (a) R. T. Buck, M. P. Doyle, M. J. Drysdale, L. Ferris, D. C. Forbes,
D. Haigh, C. J. Moody, N. D. Pearson and Q.-L. Zhou, Tetrahedron
Lett., 1996, 37, 7631; (b) H. M. L. Davies, T. Hansen, J. Rutberg and
P. R. Bruzinski, Tetrahedron Lett., 1997, 38, 1741; (c) L. A. Dakin,
S. E. Schaus, E. N. Jacobsen and J. S. Panek, Tetrahedron Lett., 1998,
39, 8947; (d) Y.-Z. Zhang, S.-F. Zhu, L.-X. Wang and Q.-L. Zhou,
Angew. Chem., Int. Ed., 2008, 47, 8496.
4 (a) R. J. P. Corriu and J. J. E. Moreau, Tetraherdon Lett., 1973,
14, 4469; (b) T. Hayashi, K. Yamamoto and M. Kumada, Tetra-
hedron Lett., 1974, 15, 331; (c) R. J. P. Corriu and J. J. E. Moreau,
J. Organomet. Chem., 1974, 64, C51.
5 T. Ohta, M. Ito, A. Tsuneto and H. Takaya, Chem. Commun.,
1994, 2525.
16 For the absolute configuration of 12 see: D. Terunuma,
N. Yamamoto, H. Kizaki and H. Nohira, Nippon Kagaku Kaishi,
1990, 5, 451.
6 Recently, Shintani and Hayashi reported the synthesis of optically
active silacycles via palladium-catalyzed enantioselective desymmetri-
zation of silacyclobutanes or C–H bond functionalization, see:
(a) R. Shintani, K. Moriya and T. Hayashi, J. Am. Chem. Soc.,
2011, 133, 16440; (b) R. Shinatani, K. Moriya and T. Hayashi, Org.
Lett., 2012, 14, 2902; (c) R. Shintani, H. Otomo, K. Ota and
T. Hayashi, J. Am. Chem. Soc., 2012, 134, 7305.
17 For the absolute configuration of 16, see: L. H. Sommer,
C. L. Frye, G. A. Parker and K. W. Michael, J. Am. Chem.
Soc., 1964, 86, 3271. See also ref. 13.
18 (a) H. D. Flack and G. Bernardinelli, J. Appl. Crystallogr., 2000,
33, 1143; (b) H. D. Flack and G. Bernardinelli, Chirality, 2008,
20, 681; (c) G. Bernardinelli and H. D. Flack, Acta Crystallogr.,
Sect. A, 1985, 41, 500.
c
11566 Chem. Commun., 2012, 48, 11564–11566
This journal is The Royal Society of Chemistry 2012