10.1002/anie.201810336
Angewandte Chemie International Edition
COMMUNICATION
dioxane; d) 27, 2,6-lutidine, p-dioxane; e) Et3N, 1,2-dichloroethane, 46% for
three steps. DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.
Acknowledgements
We thank the National Science Foundation (CHE-1362396) for
generous support of this work.
The completion of the synthesis (Scheme 6) began with a
palladium-mediated cleavage of the allyl groups[29] in 31 to yield
the seco acid, which was converted to macrocycle 32 using the
Shiina protocol.[30] Other macrolactonization conditions proved to
be ineffective, as did attempts at the transformation on
substrates in which the bridged acetal had yet to be formed.
THP ether removal under acidic conditions and deacetylation
with Me3SnOH[31] delivered divergolide E (1) and divergolide H
(4), which resulted from an acyl migration process, as a
separable 3:1 mixture in 73% yield.
Keywords: natural products • cycloaddition • oxidation • oxygen
heterocycles • macrocycles
[1]
a) L. Ding, A. Maier, H.-H. Fiebig, H. Görls, W.-H. Lin, G. Peschel, C.
Hertweck, Angew. Chem. 2011, 123, 1668; Angew. Chem. Int. Ed.
2011, 50, 1630; b) L. Ding, J. Franke, C. Hertweck, Org. Biomol. Chem.
2015, 13, 1618; c) Z. Xu, M. Baunach, L. Ding, H. Peng, J. Franke, C.
Hertweck, ChemBioChem 2014, 15, 1274.
[2]
S.-R. Li, G.-S. Zhao, M.-W. Sun, H.-G. He, H.-X. Wang, Y.-Y. Li, C.-H.
Lu, Y.-M. Shen, Gene 2014, 544, 93-99.
[3]
[4]
G. Zhao, S. Li, Z. Guo, M. Sun, C. Lu, RSC Adv. 2015, 5, 98209.
a) G. Zhao, J. Wu, W.-M. Dai, Synlett 2012, 23, 2845; b) G. Zhao, J.
Wu, W.-M. Dai, Tetrahedron 2015, 71, 4779; c) A. Hager, C. A. Kuttruff,
D. Hager, D. W. Terwilliger, D. Trauner, Synlett 2013, 24, 1915; d) S.
Rasapalli, G. Jarugumilli, G. R. Yarrapothu, J. A. Golen, A. L.
Rheingold, Org. Lett. 2013, 15, 1736; e) C. C. Nawrat, R. R. A. Kitson,
C. J. Moody, Org. Lett. 2014, 16, 1896.
O
OAc
O
O
a-b
c-d
HN
O
31
O
[5]
[6]
D. W. Terwilliger, D. Trauner, J. Am. Chem. Soc. 2018, 140, 2748.
a) X. Han, P. E. Floreancig, Angew. Chem. 2014, 126, 11255; Angew.
Chem. Int. Ed. 2014, 53, 11075; For a related approach, see: b) G. R.
Peh, P. E. Floreancig, Org. Lett. 2015, 17, 3750; c) J. G. Hubert, D. P.
Furkert, M. A. Brimble, J. Org. Chem. 2015, 80, 2715.
OTHP
O
32
O
OH
O
O
OH
O
O
O
O
[7]
a) S. L. Schreiber, T. S. Schreiber, D. B. Smith, J. Am. Chem. Soc.
1987, 109, 1525.
HN
HN
O
+
[8]
[9]
A. K. Chatterjee, D. P. Sanders, R. H. Grubbs, Org. Lett. 2002, 4, 1939.
B. J. Albert, Y. Yamaoka, H. Yamamoto, Angew. Chem. 2011, 123,
2658; Angew. Chem. Int. Ed. 2011, 50, 2610.
O
HO
O
O
[10] A. Fürstner, M. Bonnekessel, J. T. Blank, K. Radkowski, G. Seidel, F.
Lacombe, B. Gabor, R. Mynott, Chem. Eur. J. 2007, 13, 8762.
[11] A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L.
Gleason, J. Am. Chem. Soc. 1997, 119, 6496.
OH
O
1
4
Scheme 6. a) Pd(PPh3)4, Bu3SnH, HOAc, 1,2-dichloroethane, 50%; b) 2-
Methyl-6-nitrobenzoic anhydride, Et3N, DMAP, CH2Cl2, 49%; c) PPTs, EtOH,
60 °C, 84% (crude); d) Me3SnOH, 1,2-dichloroethane, 65 °C, 73%, 1:4 = 3:1.
[12] A. G. Myers, B. H. Yang, D. J. Kopecky, Tetrahedron Lett. 1996, 37,
3623.
[13] S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 1996,
521-522.
[14] P. Wipf, S. Ribe, J. Org. Chem. 1998, 63, 6454-6455.
[15] a) D. R. Williams, W. S. Kissel, J. Am. Chem. Soc. 1998, 120, 11198-
11199; b) D. R. Williams, L. Mi, R. J. Mullins, R. E. Stites, Tetrahedron
Lett. 2002, 43, 4841-4844.
We have reported the first total syntheses of divergolides E
and H in 22 steps from commercially available 1,4-pentadien-3-
ol in the longest linear sequence. This also represents the first
synthesis of any member of the bicyclic acetal-containing
divergolides. The key advance in the route is the development of
a telescoped sequence of fragment-coupling and oxidative
carbon–hydrogen bond cleavage that provides a mild and
functional group-tolerant approach to a precursor to the bridged
acetal. Additional noteworthy steps are the use of a chelation-
controlled addition of an alkyne-derived vinylzinc reagent, a
desymmetrizing Sharpless epoxidation reaction, and a carefully
orchestrated sequence for forming an amide linkage between a
sterically hindered aniline that is prone to oxidative
decomposition and an active ester that is susceptible to
destruction through ketene formation. The steps in the
syntheses of the subunits can readily be run on gram scale and
the key fragment coupling and oxidation sequence can be run
on a 500 mg scale. The modular nature of the route is well-
suited to exploring the structure activity relationship of these
natural products.
[16] T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451.
[17] M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune,
W. R. Roush, T. Sakai, Tetrahedron Lett. 1984, 25, 2183.
[18] A Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130.
[19] A. K. Ghosh, J. Li, Org. Lett. 2009, 11, 4164-4167.
[20] M. L. Belyanin, E. V. Stepanova, V. D. Ogorodnikov, Carbohydr. Res.
2012, 363, 66.
[21] P. Renton, L. Shen, J. Eckert, G. M. Lee, D. Gala, G. Chen, B.
Pramanik, D. Schumacher, Org. Process Res. Dev. 2002, 6, 36.
[22] D. J. Phillips, K. S. Pillinger, W. Li, A. E. Taylor, A. E. Graham, Chem.
Commun. 2006, 2280.
[23] A. G. Dossetter, T. F. Jamison, E. N. Jacobsen, Angew. Chem. 1999,
111, 2549; Angew. Chem. Int. Ed. 1999, 38, 2398.
[24] a) W. Tu, L. Liu, P. E. Floreancig, Angew. Chem. 2008, 120, 4252;
Angew. Chem. Int. Ed. 2008, 47, 4184; b) L. Liu, P. E. Floreancig, Org.
Lett. 2009, 11, 3152; c) G. J. Bryzgys, H. H. Jung, P. E. Floreancig,
Chem. Sci. 2012, 3, 438; d) Y. Cui, P. E. Floreancig, Org. Lett. 2012, 14,
1720.
[25] C. A. Morales-Rivera, P. E. Floreancig, P. Liu, J. Am. Chem. Soc. 2017,
139, 17935.
This article is protected by copyright. All rights reserved.